2022-2023学年四川省石室中学高考冲刺押题(最后一卷)数学试卷含解析.doc
《2022-2023学年四川省石室中学高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省石室中学高考冲刺押题(最后一卷)数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前n项和为,则A3B4C5D62等比数列若则( )A6B6C-6D3已知集合,若,则( )A4B4C8D84设集合,若集合中有且仅有2个元素,则实数的取值范围为ABC
2、D5如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是( )A等于4B大于4C小于4D不确定6某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( )ABC1D7已知等差数列的前n项和为,且,则( )A4B8C16D28命题“”的否定为( )ABCD9若实数、满足,则的最小值是( )ABCD10已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( )ABCD11已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD12从5名
3、学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A48B72C90D96二、填空题:本题共4小题,每小题5分,共20分。13已知实数满足则点构成的区域的面积为_,的最大值为_14设为正实数,若则的取值范围是_15(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是_16利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的
4、正四面体内任意一点到四个面的距离之和也为定值,则这个定值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.18(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.(1)若,且恰为的左焦点,求的两条渐近线的方程;(2)若,且,求实数的值;(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.19(12分)已知.(1)求的单调区间;
5、(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.20(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,是线段的中点.()求证:平面;()若,求直线与平面所成角的正弦值.21(12分)如图,在正四棱柱中,过顶点,的平面与棱,分别交于,两点(不在棱的端点处).(1)求证:四边形是平行四边形;(2)求证:与不垂直;(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.22(10分)已知函数,设为的导数,(1)求,; (2)猜想的表达式,并证明你的结论参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
6、的。1、C【解析】方法一:设等差数列的公差为,则,解得,所以.故选C方法二:因为,所以,则.故选C2、B【解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.3、B【解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.4、B【解析】由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,则,故,又,则,所以,所以本题答案为B.
7、【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.5、A【解析】利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题6、B【解析】首先由三视图还原几何体,进一步求出几何体的棱长【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为故选:B【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题7
8、、A【解析】利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.8、C【解析】套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.9、D【解析】根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查
9、简单的线性规划,考查数形结合的解题思想方法,是基础题10、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案考点:异面直线所成的角11、A【解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.12、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 四川省 石室 中学 高考 冲刺 押题 最后 一卷 数学试卷 解析
限制150内