2022-2023学年四川省宜宾市南溪区第三中学达标名校中考数学猜题卷含解析.doc
《2022-2023学年四川省宜宾市南溪区第三中学达标名校中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省宜宾市南溪区第三中学达标名校中考数学猜题卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(A
2、B=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A13寸B20寸C26寸D28寸2下列说法正确的是()A某工厂质检员检测某批灯泡的使用寿命采用普查法B已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C12名同学中有两人的出生月份相同是必然事件D在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是3(3分)学校要组织足球比赛赛制为单循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正
3、确的是( )A B C D4下列实数中,无理数是()A3.14B1.01001CD5的绝对值是()ABC2D26对于点A(x1,y1),B(x2,y2),定义一种运算:例如,A(5,4),B(2,3),若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A在同一条直线上 B在同一条抛物线上C在同一反比例函数图象上 D是同一个正方形的四个顶点7已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )ABCD8下列各式属于最简二次根式的有( )ABCD9某商品的进价为每件元当售价为每件元时,每星期可卖出件,现需降价处
4、理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件现在要使利润为元,每件商品应降价( )元A3B2.5C2D510长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A205万BCD二、填空题(本大题共6个小题,每小题3分,共18分)11下面是“利用直角三角形作矩形”尺规作图的过程已知:如图1,在RtABC中,ABC=90求作:矩形ABCD小明的作法如下:如图2,(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;(2)作直
5、线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD四边形ABCD就是所求作的矩形老师说,“小明的作法正确”请回答,小明作图的依据是:_.12分解因式:4x236=_13如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点若AB4,BC3,则AE+EF的长为_14如图,在平面直角坐标系中,抛物线y=x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MPx轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_15= 16点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_b(填
6、“”或“”或“=”)三、解答题(共8题,共72分)17(8分)解方程(2x+1)2=3(2x+1)18(8分)某厂按用户的月需求量(件)完成一种产品的生产,其中每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据月份(月)12成本(万元/件)1112需求量(件/月)120100 (1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求19(8分)
7、实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,ADBC,C=90,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值20(8分) (1)解方程: +4(2)解不等式组并把解集表示在数轴上:.21(8分)计算:2-1+20160-3tan30+|-|22(10分)一天晚上,李明和
8、张龙利用灯光下的影子长来测量一路灯D的高度如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长(结果精确到0.1 m)23(12分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”(1)在点C1(2,3+2),点C2(0,2),点C3(3+,)中,线段AB的“等长点”是点_;(2)若点D(m,n)是线段A
9、B的“等长点”,且DAB=60,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围24计算:3tan30参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,O的直径为26寸,故选C点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题2、B【解析】分别用方差、全面调查与抽样调查、随机事件及概
10、率的知识逐一进行判断即可得到答案【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为 (14)2+(24)2+(44)2+(44)2+(94)2=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件
11、,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.3、B【解析】试题分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程4、C【解析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C【点睛】本题主要考查无理数的定义,属于简单题5、B【解析】根据求绝对值的法则,直接计算即可解答【详解】,故选:B【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键6、A。【解析】对于点A(x1,y
12、1),B(x2,y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又,。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,互不重合的四点C,D,E,F在同一条直线上。故选A。7、B【解析】观察图形,利用中心对称图形的性质解答即可【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键8、B【解析】先根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 四川省 宜宾市 南溪 第三中学 达标 名校 中考 数学 猜题卷含 解析
限制150内