《2022-2023学年山东省临沂市罗庄区市级名校中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省临沂市罗庄区市级名校中考联考数学试卷含解析.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如下字体的四个汉字中,是轴对称图形的是(
2、 )ABCD2如图,已知点E在正方形ABCD内,满足AEB=90,AE=6,BE=8,则阴影部分的面积是()A48B60C76D803如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD4的值为( )AB-C9D-95如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()ABCD6下列代数运算正确的是()A(x+1)2=x2+1B(x3)2=x5C(2x)2=2x2Dx3x2=x57关于2、6、1、10、6的这组数据,下列说法正确的是( )A这组数据的众数是6B这组数据的中
3、位数是1C这组数据的平均数是6D这组数据的方差是108实数的相反数是( )ABCD9定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等)现从两位数中任取一个,恰好是“下滑数”的概率为( )ABCD10在平面直角坐标系中,点(-1,-2)所在的象限是()A第一象限B第二象限C第三象限D第四象限二、填空题(共7小题,每小题3分,满分21分)11如图,在RtABC中,C=90,A=30,BC=2,C的半径为1,点P是斜边AB上的点,过点P作C的一条切线PQ(点Q是切点),则线段PQ的最小值为_12如图是由两个长方体组合而成的一个立体图形的三视图,根据图中
4、所示尺寸(单位:mm),计算出这个立体图形的表面积13计算:的值是_14在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_15如图,在ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则ACD的周长为 cm16二次根式在实数范围内有意义,x的取值范围是_17若关于x的方程的解是正数,则m的取值范围是_三、解答题(共7小题,满分69分)18(10分)计算:(1)2018+()2|2 |+4sin60;19(5分)如图,在平行四边形ABCD中,ADAB(1)作出ABC的平分线(尺规作图,保留作图痕迹,不写作法);(
5、2)若(1)中所作的角平分线交AD于点E,AFBE,垂足为点O,交BC于点F,连接EF求证:四边形ABFE为菱形20(8分)已知:如图,ABC,射线BC上一点D求作:等腰PBD,使线段BD为等腰PBD的底边,点P在ABC内部,且点P到ABC两边的距离相等21(10分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C(1)求点 A 的坐标;(2)结合函数的图象,求当 y0 时,x 的取值范围22(10分)ABC在平面直角坐标系中的位置如图所示画出ABC关于y轴对称的A1B1C1;将ABC向右平移6个单位,作出平移后的A2B2C2,并写出
6、A2B2C2各顶点的坐标;观察A1B1C1和A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴23(12分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值24(14分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数参考答案一、选择题(每小题只有一个正确答案,每小题
7、3分,满分30分)1、A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形2、C【解析】试题解析:AEB=90,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选C.考点:勾股定理.3、B【解析】解:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,使图中黑色部分的图形仍然构成一个轴对称图形的概率是:故选B4、A【解析】【分析】根据绝对值的意义进
8、行求解即可得.【详解】表示的是的绝对值,数轴上表示的点到原点的距离是,即的绝对值是,所以的值为 ,故选A.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.5、B【解析】根据题意找到从左面看得到的平面图形即可【详解】这个立体图形的左视图是,故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置6、D【解析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】
9、本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.7、A【解析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差= (15)2+(25)2+(65)2+(65)2+(105)2=10.1故选A考点:方差;算术平均数;中位数;众数8、D【解析】根据相反数的定义求解即可【详解】的相反数是-,故选D【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数9、A【解析】分析:根据概率的求法,找准两点:全部情况的总数:
10、根据题意得知这样的两位数共有90个;符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为故选A点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=10、C【解析】:点的横纵坐标均
11、为负数,点(-1,-2)所在的象限是第三象限,故选C二、填空题(共7小题,每小题3分,满分21分)11、 【解析】当PCAB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2CQ2,先求出CP的长,然后由勾股定理即可求得答案【详解】连接CP、CQ;如图所示:PQ是C的切线,CQPQ,CQP=90,根据勾股定理得:PQ2=CP2CQ2,当PCAB时,线段PQ最短在RtACB中,A=30,BC=2,AB=2BC=4,AC=2,CP=,PQ=,PQ的最小值是故答案为:【点睛】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PCAB时,线段PQ最短是关键12、100 m
12、m1【解析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可【详解】根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,下面的长方体长8mm,宽6mm,高1mm,立体图形的表面积是:441+411+41+611+811+681-41=100(mm1)故答案为100 mm1【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键13、-1【解析】解:=1故答案为:114、 【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发
13、生的概率的大小【详解】解:在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是故答案为:【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15、8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,ACD的周长=AD+CD+AC=AB+AC,解答出即可解:DE是BC的垂直平分线,BD=CD,AB=AD+BD=AD+CD,ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主
14、要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等16、x1【解析】根据二次根式有意义的条件列出不等式,解不等式即可【详解】解:由题意得,1x0,解得,x1,故答案为x1【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键17、m0且x-20,则有4-m 0且4-m-20,解得:m4且m2.三、解答题(共7小题,满分69分)18、1.【解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果详解:原式=1+4-(2-
15、2)+4,=1+4-2+2+2,=1点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算19、解:(1)图见解析;(2)证明见解析.【解析】(1)根据角平分线的作法作出ABC的平分线即可(2)首先根据角平分线的性质以及平行线的性质得出ABE=AEB,进而得出ABOFBO,进而利用AFBE,BO=EO,AO=FO,得出即可【详解】解:(1)如图所示:(2)证明:BE平分ABC,ABE=EAF平行四边形ABCD中,AD/BCEBF=AEB,ABE=AEBAB=AEAOBE,BO=EO在ABO和FBO中,
16、ABO=FBO ,BO=EO,AOB=FOB,ABOFBO(ASA)AO=FOAFBE,BO=EO,AO=FO四边形ABFE为菱形20、作图见解析.【解析】由题意可知,先作出ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.【详解】点P到ABC两边的距离相等,点P在ABC的平分线上;线段BD为等腰PBD的底边,PB=PD,点P在线段BD的垂直平分线上,点P是ABC的平分线与线段BD的垂直平分线的交点,如图所示:【点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.21、(1);(2)【解析】(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标
17、,进而求出点A即可;(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出【详解】解:(1)当时,函数的值为-2,点的坐标为 四边形为矩形,解方程,得点的坐标为点的坐标为(2)解方程,得由图象可知,当时,的取值范围是【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质22、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)A1B1C1和A2B2C2是轴对称图形,对称轴为图中直线l:x1,见解析.【解析】(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据
18、平移的性质,ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1【详解】(1)由图知,A(0,4),B(2,2),C(1,1),点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得A1B1C1;(2)ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变,作出A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)A1B1C1和A2B2C2是轴对称图形,对称轴为图中直线l:x=1【点睛】本题考查了轴对称图形的性质和作图平移变换,作图时要
19、先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形23、,当x1时,原式1【解析】先化简分式,然后将x的值代入计算即可【详解】解:原式 . 且, x的整数有,取,当时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键24、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.
限制150内