2022-2023学年四川省绥化市重点高中高三六校第一次联考数学试卷含解析.doc
《2022-2023学年四川省绥化市重点高中高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省绥化市重点高中高三六校第一次联考数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为虚数单位,复数,则其共轭复数( )ABCD2已知函数,以下结论正确的个数为( )当时,函数的图象
2、的对称中心为;当时,函数在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D43已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( )ABCD4用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为( )ABCD5设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D6在中,内角的平分线交边于点,则的面积是( )ABCD7已知为虚数单位,若复数满足,则( )ABCD8在
3、的展开式中,含的项的系数是( )A74B121CD9设全集,集合,.则集合等于( )ABCD10定义在上的奇函数满足,若,则( )AB0C1D211已知集合,集合,则等于( )ABCD12是的( )条件A充分不必要B必要不充分C充要D既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13已知半径为4的球面上有两点,球心为O,若球面上的动点C满足二面角的大小为,则四面体的外接球的半径为_.14已知集合,则_.15已知某几何体的三视图如图所示,则该几何体外接球的表面积是_.16在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是_.三、解答题:共70分。解答应写出文字说明、证
4、明过程或演算步骤。17(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.18(12分)如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.19(12分)在中,内角的对边分别是,已知(1)求的值;(2)若,求的面积20(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)21(12分)已知,.(1)求的最小值;(2)若对任意,都有,求实数的
5、取值范围.22(10分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.2、C【解析】逐一分析选项,根据函数的对称中心判断;利用导数判断函数的单调性;先求函数的导数,若满足条件,则极值点必在区间;利用导数求函数在给定区间的最值.
6、【详解】为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确由题意知因为当时,又,所以在上恒成立,所以函数在上为单调递减函数,正确由题意知,当时,此时在上为增函数,不合题意,故令,解得因为在上不单调,所以在上有解,需,解得,正确令,得根据函数的单调性,在上的最大值只可能为或因为,所以最大值为64,结论错误故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.3、A【解析】建立平面直角坐标系,求出直线,设出点,通过,找出与的关系通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值
7、域,即为的取值范围【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线 , 设点, 所以 由得 ,即 ,所以,由及,解得,由二次函数的图像知,所以的取值范围是故选A【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用4、C【解析】由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】每次生成一个实数小于1的概率为.这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.5、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心
8、率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来6、B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正
9、弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.7、A【解析】分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出.详解:由题设有,故,故选A.点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.8、D【解析】根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,9、A【解析】先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 四川省 绥化市 重点高中 高三六校 第一次 联考 数学试卷 解析
限制150内