2022-2023学年上海市宝山区市级名校高三第二次诊断性检测数学试卷含解析.doc
《2022-2023学年上海市宝山区市级名校高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年上海市宝山区市级名校高三第二次诊断性检测数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )ABC16D322要得到函数的图象,只需将函数的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位3若关于的不等式有正整数解,则实数的最小
2、值为( )ABCD4函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称5已知集合,则元素个数为( )A1B2C3D46设集合,则( )ABCD7已知向量,且,则( )ABC1D28函数的大致图像为( )ABCD9已知椭圆+=1(ab0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若ABF是直角三角形,则该椭圆的离心率为( )ABCD10某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD11复数的共轭复数
3、对应的点位于( )A第一象限B第二象限C第三象限D第四象限12设,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_.14已知三棱锥的四个顶点都在球的球面上,则球的表面积为_.15已知矩形 ABCD,AB= 4 ,BC =3,以 A, B 为焦点,且 过 C, D 两点的双曲线的离心率为_.16若函数在区间上有且仅有一个零点,则实数的取值范围有_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等
4、式成立,求实数的取值范围.18(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.19(12分)如图,底面ABCD是边长为2的菱形,平面ABCD,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.20(12分)如图,在三棱柱中,平面,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.21(12分)如图,四边形中,沿对角线将翻折成,使得. (1)证明:
5、;(2)求直线与平面所成角的正弦值.22(10分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.2、D【解析】直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位故选:D【点睛】本题考查三角函数图象平移的应用问题,属于基础题3、A【解析】根据题意可将转化为,令,利用导数,判断其单调性即可得到实
6、数的最小值【详解】因为不等式有正整数解,所以,于是转化为, 显然不是不等式的解,当时,所以可变形为令,则,函数在上单调递增,在上单调递减,而,所以当时,故,解得故选:A【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题4、B【解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以,令,解得,当时,即函数的一个对称中心为,即函数的图象关于点成中心对称故选B【点睛】本题主要考查
7、了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题5、B【解析】作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.6、D【解析】利用一元二
8、次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.7、A【解析】根据向量垂直的坐标表示列方程,解方程求得的值.【详解】由于向量,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.8、D【解析】通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,排除B和C;当时,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.9、A【解析】联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的
9、关系式,解方程求解即可.【详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,=0,因为,由平面向量垂直的坐标表示可得, 因为,所以a2-c2=ac,两边同时除以可得,解得e=或(舍去),所以该椭圆的离心率为.故选:A【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.10、C【解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C11、A【解析】试题分析:由题意可得:. 共轭复数为,故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 上海市 宝山区 名校 第二次 诊断 检测 数学试卷 解析
限制150内