2022-2023学年宁夏固原第一中学高三最后一卷数学试卷含解析.doc
《2022-2023学年宁夏固原第一中学高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年宁夏固原第一中学高三最后一卷数学试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则( )ABCD2已知函数,且,则( )A3B3或7C5D5或83已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )ABCD24如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是( )ABCD5设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6若,满足约束条件,则的取值范围为( )ABCD7函数的图象如图所示,为了得到
3、的图象,可将的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位8已知点,若点在曲线上运动,则面积的最小值为( )A6B3CD9函数在区间上的大致图象如图所示,则可能是( )ABCD10已知数列满足:)若正整数使得成立,则( )A16B17C18D1911九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为(
4、 )ABCD12设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,角,的对边长分别为,满足,则的面积为_14若,则_.15如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_,点到直线的距离的最大值为_.16若且时,不等式恒成立,则实数a的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.18(12分)已知矩阵,且二阶矩阵M满足AM=B,求M的特征值及
5、属于各特征值的一个特征向量.19(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02420(12分)设函数其中()若曲线在
6、点处切线的倾斜角为,求的值;()已知导函数在区间上存在零点,证明:当时,.21(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为()求椭圆与椭圆的标准方程;()过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.22(10分)在四棱锥中,底面为直角梯形,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】需结合抛物线第一定义和图形,得为等腰三角
7、形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题2、B【解析】根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题3、B【解析】求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率
8、,是基础题.4、C【解析】以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.【详解】以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,则,设,则,所以,且,故.故选:C.【点睛】本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.5、B【解析】先解不等式化简两个条件,利用集合法判断充分必要条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.6、B【解析
9、】根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.7、C【解析】根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,.又时函数值最大,所以.又,从而,只需将的图象向左平移个单位即可得到的图象,故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求8、B【解析】求得直线的方程,画出曲线表示的下半圆,结合图象可得位于,结
10、合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.【详解】解:曲线表示以原点为圆心,1为半径的下半圆(包括两个端点),如图,直线的方程为,可得,由圆与直线的位置关系知在时,到直线距离最短,即为,则的面积的最小值为.故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得9、B【解析】根据特殊值及函数的单调性判断即可;【详解】解:当时,无意义,故排除A;又,则,故排除D;对于C,当时,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 宁夏 固原 第一 中学 最后 一卷 数学试卷 解析
限制150内