2022-2023学年四川省眉山市彭山区第一中学高考数学三模试卷含解析.doc
《2022-2023学年四川省眉山市彭山区第一中学高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省眉山市彭山区第一中学高考数学三模试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 若数列满足且,则使的的值为( )ABCD2已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD3赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边
2、长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD4已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )ABCD5若的二项式展开式中二项式系数的和为32,则正整数的值为( )A7B6C5D46已知向量,=(1,),且
3、在方向上的投影为,则等于( )A2B1CD07执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A7B15C31D638设是定义在实数集上的函数,满足条件是偶函数,且当时,则,的大小关系是( )ABCD9函数图象的大致形状是( )ABCD10已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是( )ABCD11已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( )ABCD12已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分
4、。13已知内角,的对边分别为,则_14已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为_.15已知复数z是纯虚数,则实数a_,|z|_16在中,已知是的中点,且,点满足,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)求函数的单调递增区间;(2)的三个内角、所对边分别为、,若且,求面积的取值范围.18(12分)已知函数.(1)证明:当时,;(2)若函数有三个零点,求实数的取值范围.19(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准
5、线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.20(12分)已知函数u(x)xlnx,v(x)x1,mR(1)令m2,求函数h(x)的单调区间;(2)令f(x)u(x)v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值21(12分)已知数列,数列满足,n(1)若,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立当数列为等差数列时,求证:数列,的公差相等;数列能否为等比数列?若能,请
6、写出所有满足条件的数列;若不能,请说明理由22(10分)设的内角、的对边长分别为、.设为的面积,满足.(1)求;(2)若,求的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C2、B【解析】由题意可得c=,设右焦点为F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180知,FPO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得
7、|PF|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在3、D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:
8、D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题4、D【解析】根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.5、C【解析】由二项式系数性质,的展开式中所有二项式系数和为计算【详解】的二项展开式中二项式系数和为,故选:C【
9、点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键6、B【解析】先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.7、B【解析】试题分析:由程序框图可知:,;,;,;,;,. 第步后输出,此时,则的最大值为15,故选B.考点:程序框图.8、C【解析】y=f(x+1)是偶函数,f(-x+1)=f(x+1),即函数f(x)关于x=1对称当x1时,为减函数,f(log32)=f(2-log32)= f()且=log34,log343,bac,故选C9、B【解析】判断函数的奇偶性,可排
10、除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,可排除D;故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.10、D【解析】根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 四川省 眉山市 彭山 第一 中学 高考 数学 试卷 解析
限制150内