2022-2023学年北京理工大学附属中学高三第三次测评数学试卷含解析.doc
《2022-2023学年北京理工大学附属中学高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京理工大学附属中学高三第三次测评数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )A向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C向左平移个长度单位,再把所得各
2、点的横坐标变为原来的,纵坐标不变D向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变2已知,则,不可能满足的关系是()ABCD3若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是( )ABCD5关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数最后根据统
3、计数来估计的值.若,则的估计值为( )ABCD6在平行六面体中,M为与的交点,若,,则与相等的向量是( )ABCD7过双曲线 的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为( )ABCD8函数的值域为( )ABCD9已知等差数列的前项和为,且,则( )A45B42C25D3610若与互为共轭复数,则( )A0B3C1D411已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D109512已知展开式中第三项的二项式系数与第四项的二项式系数相等,若,则的值为( )A1B1C8lD81二、填空题:本题共4小
4、题,每小题5分,共20分。13已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为_.14曲线在点处的切线方程为_.15如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为_.16已知平面向量,满足|1,|2,的夹角等于,且()()0,则|的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.18(12分)已知函数.()求的值;()若,且,求的值.19(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取
5、相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.20(12分)在中,()求角的大小;()若,求的值21(12分)已知,函数.()若在区间上单调递增,求的值;()若恒成立,求的最大值.(参考数据:)22(10分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立若零件的长度满足,则认为该零件是合格的,否则该零件不合格(1)假设某一天小张抽查出不合
6、格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由附:若随机变量服从正态分布,则参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,又,又,为了得到这个函数的图象,只需将的图象
7、上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.2、C【解析】根据即可得出,根据,即可判断出结果【详解】;,;,故正确;,故C错误;,故D正确故C【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题3、B【解析】由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解【详解】由题意得,因为,所以在复平面内对应的点位于第二象限故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数
8、学运算的能力,属于基础题.4、A【解析】设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,其中, ,即 关于轴对称 故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.5、B【解析】先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知
9、,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.6、D【解析】根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.7、C【解析】由题意可得双曲线的渐近线的方程为.为线段的中点,则为等腰三角形.由双曲线的的渐近线的性质可得,即.双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 北京理工大学 附属中学 第三次 测评 数学试卷 解析
限制150内