2022-2023学年安徽省合肥市肥东县第二中学高考全国统考预测密卷数学试卷含解析.doc
《2022-2023学年安徽省合肥市肥东县第二中学高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省合肥市肥东县第二中学高考全国统考预测密卷数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为( )ABCD2若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )AB2CD3在区间上
2、随机取一个数,使直线与圆相交的概率为( )ABCD4tan570=( )AB-CD5已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )ABCD7已知,若,则实数的值是()A-1B7C1D1或78已知是偶函数,在上单调递减,则的解集是ABCD9已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD10已知复数满足,则的值为( )ABCD211祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的
3、几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为( )AB4C2D二、填空题:本题共4小题,每小题5分,共20分。13如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有_种14的展开式中的系数为_.15已知命题:,那么是_.16在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项
4、等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分
5、制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为、共8个等级。参照正态分布原则,确定各等级人数所占比例分别为、.等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科等级的原始分分布区间为5869,则该同学化学学科的原始成绩属等级.而等级的转换分区间为6170,那么该同学化
6、学学科的转换分为:设该同学化学科的转换等级分为,求得.四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(i)若小明同学在这次考试中物理原始分为84分,等级为,其所在原始分分布区间为8293,求小明转换后的物理成绩;(ii)求物理原始分在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记表示这4人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,)19(12分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围20(12分)已知
7、函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.21(12分)如图,在平面四边形中,.(1)求;(2)求四边形面积的最大值.22(10分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出满足条件的正的面积,再求出满足条件的正内的点到顶点、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、的距离均不小于的图形平面区域如图中阴影部分所
8、示,阴影部分区域的面积为.则使取到的点到三个顶点、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题2、D【解析】利用复数代数形式的乘除运算化简,再由实部为求得值【详解】解:在复平面内所对应的点在虚轴上,即故选D【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题3、C【解析】根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得 所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.4、A
9、【解析】直接利用诱导公式化简求解即可【详解】tan570=tan(360+210)=tan210=tan(180+30)=tan30=故选:A【点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.5、D【解析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题6、D【解析】讨论,三种情况,求导得到单调区间,画
10、出函数图像,根据图像得到答案.【详解】当时,故,函数在上单调递增,在上单调递减,且;当时,;当时,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.7、C【解析】根据平面向量数量积的坐标运算,化简即可求得的值.【详解】由平面向量数量积的坐标运算,代入化简可得.解得.故选:C.【点睛】本题考查了平面向量数量积的坐标运算,属于基础题.8、D【解析】先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 安徽省 合肥市 肥东县 第二 中学 高考 全国 统考 预测 数学试卷 解析
限制150内