2022-2023学年山西省大同二中高三压轴卷数学试卷含解析.doc
《2022-2023学年山西省大同二中高三压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山西省大同二中高三压轴卷数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1对两个变量进行回归分析,给出如下一组样本数据:,下列函数模型中拟合较好的是( )ABCD2直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A10B9C8D73已知实数、满足约束条件,则的最大值为( )ABCD4框图与程序是解决数学问题的重要
2、手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中空白框中应填入( )A,BC,D,5已知函数,则下列结论错误的是( )A函数的最小正周期为B函数的图象关于点对称C函数在上单调递增D函数的图象可由的图象向左平移个单位长度得到6一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )ABCD7已知函数若对区间内的任意实数,都有,则实数的取值范围是( )ABCD8的展开式中各项系数的和为2,则该展开式中常数项为A-40B-20C20D4
3、09已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D2510已知向量,若,则与夹角的余弦值为( )ABCD11已知实数满足则的最大值为( )A2BC1D012已知集合,则集合的非空子集个数是( )A2B3C7D8二、填空题:本题共4小题,每小题5分,共20分。13为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害. (1)_;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过_分钟人方可进入房间.14
4、双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为_,离心率为_.15曲线f(x)=(x2 +x)lnx在点(1,f(1)处的切线方程为_.16设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱锥中,底面为直角梯形,分别为,的中点(1)求证:(2)若,求二面角的余弦值18(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y290相切(1)求圆的方程;(2)设直线axy+50(a0)与圆相交于A,B两点
5、,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(2,4),若存在,求出实数a的值;若不存在,请说明理由19(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.20(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目
6、,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为、共8个等级。参照正态分布原则,确定各等级人数所占比例分别为、.等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科等级的原始分分布区间为5869,则该同学化学学科的原始成
7、绩属等级.而等级的转换分区间为6170,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为,求得.四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(i)若小明同学在这次考试中物理原始分为84分,等级为,其所在原始分分布区间为8293,求小明转换后的物理成绩;(ii)求物理原始分在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记表示这4人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,)21(12分)已知函数.(1)解不等式;(2)记函数
8、的最大值为,若,证明:.22(10分)如图,在四棱锥中,平面ABCD平面PAD,E是PD的中点证明:;设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好2、B【解析】根据抛物线
9、中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知 所以 因为 为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题3、C【解析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,
10、属于中档题.4、A【解析】依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.5、D【解析】由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,所以B正确;当时,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.6、B【解析】由三视图确定原几何体是正三棱柱,由此
11、可求得体积【详解】由题意原几何体是正三棱柱,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体7、C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得. 当a1时,所以函数f(x)在单调递减, 因为对区间内的任意实数,都有, 所以, 所以 故a1,与a1矛盾,故a1矛盾. 当1ae时,函数f(x)在0,lna单调递增,在(lna,1单调递减. 所以 因为对区间内的任意实数,都有, 所以, 所以 即 令, 所以 所以函数g(a)在(1,e)上单调递减, 所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 山西省 大同 中高 压轴 数学试卷 解析
限制150内