《2022-2023学年北京市海淀区第二十中学高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京市海淀区第二十中学高考冲刺数学模拟试题含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )ABCD2函数在上的图象大致为( )ABCD3在中,为的外心,若,则( )ABCD4已知函数()的部分图象如图所示,且,则的最小值为( )ABCD5等腰直角三角形BCD与等边三角形ABD中,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( ) ABCD6已知函数,下列结论不正确的是( )A的图像关于点中心对称B既是奇函数,又是周期函数C的图像关于直线对称D的最大值是7已知(),i为虚数单位,则( )AB3C1D58一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的
3、体积为( ) ABCD9已知集合,则为( )A0,2)B(2,3C2,3D(0,210复数()ABC0D11为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A倍B倍C倍D倍12某工厂一年中各月份的收入、支出情况的
4、统计如图所示,下列说法中错误的是( )A收入最高值与收入最低值的比是B结余最高的月份是月份C与月份的收入的变化率与至月份的收入的变化率相同D前个月的平均收入为万元二、填空题:本题共4小题,每小题5分,共20分。13若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有_.(填上所有正确答案的序号),;,;,;,.14在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为_15函数的图象在处的切线与直线互相垂直,则_16不等式对于定义域内的任意恒成立,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程
5、或演算步骤。17(12分)已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.18(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.19(12分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,总有成
6、立.20(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,()求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;()商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)()求的分布列;()若,求的数学期望的最大值.21(12分)如图,已知正方形所在平面与梯形所在平面垂直,BMAN,(1)证明:平面;(2)求点N到平面CDM的距离22(10分)为了解甲、乙两个快递公司的
7、工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司
8、员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】可设,根据在上为偶函数及便可得到:,可设,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,;若,且,则:;在上是减函数;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判
9、断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.2、A【解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.3、B【解析】首先根据题中条件和三角形中几何关系求出,即可求出的值.【详解】如图所示过做三角形三边的垂线,垂足分别为,过分别做,的平行线,由题知,则外接圆半径,因为,所以,又因为,所以,由题可知,所以,所以.故选:D.【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题
10、.4、A【解析】是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得【详解】由题意,函数在轴右边的第一个零点为,在轴左边第一个零点是,的最小值是故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性函数的零点就是其图象对称中心的横坐标5、A【解析】设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果.【详解】设E为BD中点,连接AE、CE,由题可知,所以平面,过A作于点O,连接DO,则平面,所以即为直线AD与平面BCD所成角的平面角,所以,可得
11、,在中可得,又,即点O与点C重合,此时有平面,过C作与点F,又,所以,所以平面,从而角即为直线AC与平面ABD所成角,故选:A.【点睛】该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.6、D【解析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果【详解】解:,正确;,为奇函数,周期函数,正确;,正确;D: ,令,则,则时,或时,即在上单调递增,在和上单调递减;且,故D错误故选:【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题7、C【解析】利用复数代数形式的乘法运算化
12、简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.8、C【解析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案【详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:【点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状9、B【解析】先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了
13、计算能力,属于基础题.10、C【解析】略11、B【解析】设贫困户总数为,利用表中数据可得脱贫率,进而可求解.【详解】设贫困户总数为,脱贫率,所以. 故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选:B【点睛】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.12、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误综上,故选二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可知,若要存在使得成立,我们可考虑两函数是
14、否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对,都可以采用此法判断,对分析式子特点可知,进而判断【详解】时,令,则,单调递增, ,即.令,则,单调递减,即,因此,满足题意.时,易知,满足题意.注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为,易知,因此不存在直线满足题意.时,注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题14、【
15、解析】根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.【详解】根据题意画出几何图形,以为原点建立空间直角坐标系:设正方体的棱长为1,则 所以所以,所以异面直线与所成角的余弦值为,故答案为:.【点睛】本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.15、1.【解析】求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率 本题正确结果:【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决
16、本题的关键16、【解析】根据题意,分离参数,转化为只对于内的任意恒成立,令,则只需在定义域内即可,利用放缩法,得出,化简后得出,即可得出的取值范围.【详解】解:已知对于定义域内的任意恒成立,即对于内的任意恒成立,令,则只需在定义域内即可,当时取等号,由可知,当时取等号,当有解时,令,则,在上单调递增,又,使得,则,所以的取值范围为.故答案为:.【点睛】本题考查利用导数研究函数单调性和最值,解决恒成立问题求参数值,涉及分离参数法和放缩法,考查转化能力和计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)见解析;(2).【解析】试题分析:(1)利用平方法消去参数,
17、即可得到的普通方程,两边同乘以利用 即可得的直角坐标方程;(2)设直线的参数方程为(为参数),代入,利用韦达定理、直线参数方程的几何意义以及三角函数的有界性可得结果.试题解析:(1)曲线的普通方程为,曲线的直角坐标方程为 ; (2)设直线的参数方程为(为参数)又直线与曲线:存在两个交点,因此. 联立直线与曲线:可得则联立直线与曲线:可得,则即18、(1)(2)【解析】(1) 设出直线的方程,再与抛物线联立方程组,进而求得点的坐标,结合弦长即可求得抛物线的方程;(2) 设直线的方程,运用韦达定理可得,可得之间的关系,再运用进行裂项,可求得,解不等式求得的值.【详解】解:(1)设过抛物线焦点的直线
18、方程为,与抛物线方程联立得:,设,所以,所以抛物线方程为(2)设直线方程为,由得.【点睛】本题考查了直线与抛物线的关系,考查了韦达定理和运用裂项法求数列的和,考查了运算能力,属于中档题.19、(1)(2)见解析【解析】(1)求出函数的导函数,依题意可得在上恒成立,参变分离得在上恒成立.设,求出即可得到参数的取值范围;(2)不妨设,利用导数说明函数在上是减函数,即可得证;【详解】解:(1),且函数在上为减函数,即在上恒成立,在上恒成立.设,函数在上单调递增,实数的取值范围为.(2)不妨设,则,.,又,令,在上为减函数,即,在上是减函数,即,当时,.,.【点睛】本题考查了利用导数研究函数的单调性、
19、极值与最值,利用导数证明不等式,考查了推理能力与计算能力,属于难题20、()0.288()()见解析()数学期望的最大值为280【解析】()根据题意,设购买该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;()()依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;()由题意知,解得,根据的分布列,得出的数学期望,结合,即可算出的最大值.【详解】解:()设购买该商品的3位顾客中,选择分2期付款的人数为,则,则,故购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.()()依题意,的取值
20、为200,250,300,350,400,的分布列为:2002503003504000.16(),由题意知,又,即,解得,当时,的最大值为280,所以的数学期望的最大值为280.【点睛】本题考查独立重复事件和二项分布的应用,以及离散型分布列和数学期望,考查计算能力.21、(1)证明见解析 (2)【解析】(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,所以平面ABMN,因为平面ABMN,平面ABMN,所以, 因为,所以,因为,所以,所以,因为在直角梯形ABMN中,所以, 所以,所以,因为,所以平面 (2)如图,取BM的中点E,则,又BMAN,所以四边形ABEN是平行四边形,
21、所以NEAB,又ABCD,所以NECD,因为平面CDM,平面CDM,所以NE平面CDM,所以点N到平面CDM的距离与点E到平面CDM的距离相等, 设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,由题易得平面BCM,所以,且,所以, 又,所以由可得,解得,所以点N到平面CDM的距离为 22、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利用(1)(2)的结果,可估算两公司的每位员工在该月所得的劳务费【详解】解:(1)由题意知甲公司员工在这10天投递的快递件数的平均数为.众数为330.(2)设乙公司员工1天的投递件数为随机变量,则当时,当时,当时,当时,当时,的分布列为204219228273291(元);(3)由(1)估计甲公司被抽取员工在该月所得的劳务费为(元)由(2)估计乙公司被抽取员工在该月所得的劳务费为(元).【点睛】本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.
限制150内