《2022-2023学年吉林省延边州安图县重点达标名校中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省延边州安图县重点达标名校中考猜题数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a0b,则下列结论一定正确的是()Am+n0Bm+n0CmnDmn2如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼
2、成一个直角三角形,则红、蓝两张纸片的面积之和是()A60cm2B50cm2C40cm2D30cm23如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()ABGFDG HD平分EHG AGBE SHDG:SHBG=tanDAG 线段DH的最小值是22ABCD4下列各数中,无理数是()A0BCD5 “车辆随机到达一个路口,遇到红灯”这个事件是( )A不可能事件B不确定事件C确定事件D必然事件6如图,从正方形纸片的顶点沿虚线剪开,则1的度数可能是( )A44B45C46D477如图,在矩形ABCD中,A
3、B=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD8据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A0.31010 B3109 C30108 D3001079下列函数中,y关于x的二次函数是( )Ayax2+bx+cByx(x1)Cy=Dy(x1)2x210下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A2011年我国的核电发电量占总发电量的比值约为1.5%B2006年我国的总发电量约为25000亿千瓦时C2013年我国的核电
4、发电量占总发电量的比值是2006年的2倍D我国的核电发电量从2008年开始突破1000亿千瓦时二、填空题(共7小题,每小题3分,满分21分)11已知m=,n=,那么2016mn=_12已知线段AB=2cm,点C在线段AB上,且AC2=BCAB,则AC的长_cm13在ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为_14如图所示,扇形OMN的圆心角为45,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A
5、3在线段OM上,依次规律,继续作正方形,则A2018M=_15如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为_m. 16某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a的代数式表示)17函数y= 中,自变量x的取值范围为_三、解答题(共7小题,满分69分)18(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30,AC=4,求菱形OCED的面积19(5分)(1)解方程:=0;(2)解不等式组 ,并把所得解
6、集表示在数轴上20(8分)动画片小猪佩奇分靡全球,受到孩子们的喜爱.现有4张小猪佩奇角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.21(10分)已知关于x的一元二次方程x26x+(2m+1)=0有实数根求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x220,求m的取值范围22(10分)如图,AB是
7、半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BEDC(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC8,cosBED,求AD的长23(12分)如图1,抛物线y1=ax1x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R
8、,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式24(14分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 的面积为 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据反比例函数的性质,可得答案【详解】y=的k=-21,图象位于二四象限,a1,P(a,m)在第二象限,m1;b1,Q(b,n)在第四象限,n1n1m,即mn,故D正确;故选D【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k1时,图
9、象位于二四象限是解题关键2、D【解析】标注字母,根据两直线平行,同位角相等可得B=AED,然后求出ADE和EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解【详解】解:如图,正方形的边DECF,B=AED,ADE=EFB=90,ADEEFB,设BF=3a,则EF=5a,BC=3a+5a=8a,AC=8a=a,在RtABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,红、蓝两张纸片的面积之和=a8a-(5a
10、)1,=a1-15a1,=a1,=,=30cm1故选D【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.3、B【解析】首先证明ABEDCF,ADGCDG(SAS),AGBCGB,利用全等三角形的性质,等高模型、三边关系一一判断即可【详解】解:四边形ABCD是正方形,AB=CD,BAD=ADC=90,ADB=CDB=45.在ABE和DCF中,AB=CD,BAD=ADC,AE=DF,ABEDCF,ABE=DCF.在ADG和CDG中,AD=CD,ADB=CDB,DG=DG,ADGCDG,DAG=DCF,ABE=DA
11、G.DAG+BAH=90,BAE+BAH=90,AHB=90,AGBE,故正确,同理可证:AGBCGB.DFCB,CBGFDG,ABGFDG,故正确.SHDG:SHBG=DG:BG=DF:BC=DF:CD=tanFCD,DAG=FCD,SHDG:SHBG=tanFCD=tanDAG,故正确.取AB的中点O,连接OD、OH.正方形的边长为4,AO=OH=4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1无法证明DH平分EHG,故错误,故正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题
12、的关键是掌握它们的性质进行解题.4、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.5、B【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、A【解析】连接正方形的对角线,然后依据正方形的性质进行判断即可【详解】解:
13、如图所示:四边形为正方形,14511145故选:A【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键7、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面
14、积转化为规则图形的面积8、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.【详解】解:根据科学计数法的定义可得,3 000 000 000=3109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.9、B【解析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B. y=x(x1)=x2-x,是二次函数,故符合题意;
15、C. 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x1)2x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a0)的函数叫做二次函数,据此求解即可.10、B【解析】由折线统计图和条形统计图对各选项逐一判断即可得【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为5002.0%25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从20
16、12年开始突破1000亿千瓦时,此选项错误;故选:B【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.【详解】解:m=,m=n,2016m-n=20160=1故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.12、【解析】设AC=x,则BC=
17、2-x,根据AC2=BCAB列方程求解即可.【详解】解:设AC=x,则BC=2-x,根据AC2=BCAB可得x2=2(2-x),解得:x=或(舍去).故答案为.【点睛】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.13、3【解析】以AB为边作等边ABE,由题意可证AECABD,可得BD=CE,根据三角形三边关系,可求EC的最大值,即可求BD的最大值【详解】如图:以AB为边作等边ABE,ACD,ABE是等边三角形,AD=AC,AB=AE=BE=1,EAB=DAC=60o,EAC=BAD,且AE=AB,AD=AC,DABCAE(SAS)BD=CE,若点E,点B,点C不共线时,ECB
18、C+BE;若点E,点B,点C共线时,EC=BC+BEECBC+BE=3,EC的最大值为3,即BD的最大值为3.故答案是:3【点睛】考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键14、【解析】探究规律,利用规律即可解决问题.【详解】MON=45,C2B2C2为等腰直角三角形,C2B2=B2C2=A2B2正方形A2B2C2A2的边长为2,OA3=AA3=A2B2=A2C2=2OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,OA2028=A2028A2027=,A2028M=2-故答案为2
19、-【点睛】本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型15、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可解:同一时刻物高与影长成正比例设旗杆的高是xm1.6:1.2=x:9x=1即旗杆的高是1米故答案为1考点:相似三角形的应用16、(50-3a).【解析】试题解析:购买这种售价是每千克a元的水果3千克需3a元,根据题意,应找回(50-3a)元考点:列代数式.17、x1【解析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-10,解得x的范围【详解】根据题意得:x10,解得:x1.故答案为x1.【点睛】本
20、题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.三、解答题(共7小题,满分69分)18、(1)证明见解析;(1)【解析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可(1)解直角三角形求出BC=1AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可【详解】证明:,四边形OCED是平行四边形,矩形ABCD,四边形OCED是菱形;在矩形ABCD中,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,【点睛】本题主要考查了矩形
21、的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半19、(1)x=;(2)x3;数轴见解析;【解析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可【详解】解:(1)方程两边都乘以(12x)(x+2)得:x+2(12x)=0,解得: 检验:当时,(12x)(x+2)0,所以是原方程的解,所以原方程的解是;(2) ,解不等式得:x1,解不等式得:x3,不等式组的解集为x3,在数轴上表示为:【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,
22、能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键20、(1);(2) 【解析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答【详解】(1);(2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下: 弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).P(姐姐抽到A佩
23、奇,弟弟抽到B乔治)【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比21、(1)m1;(2)3m1【解析】试题分析:(1)根据判别式的意义得到=(-6)2-1(2m+1)0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x220得到2(2m+1)+620,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围试题解析:(1)根据题意得(6)21(2m1)0, 解得m1; (2)
24、根据题意得x1x26,x1x22m1, 而2x1x2x1x220,所以2(2m1)620, 解得m3,而m1,所以m的范围为3m122、(1)AC与O相切,证明参见解析;(2).【解析】试题分析:(1)由于OCAD,那么OAD+AOC=90,又BED=BAD,且BED=C,于是OAD=C,从而有C+AOC=90,再利用三角形内角和定理,可求OAC=90,即AC是O的切线;(2)连接BD,AB是直径,那么ADB=90,在RtAOC中,由于AC=8,C=BED,cosBED=,利用三角函数值,可求OA=6,即AB=12,在RtABD中,由于AB=12,OAD=BED,cosBED=,同样利用三角函
25、数值,可求AD试题解析:(1)AC与O相切弧BD是BED与BAD所对的弧,BAD=BED,OCAD,AOC+BAD=90,BED+AOC=90,即C+AOC=90,OAC=90,ABAC,即AC与O相切;(2)连接BDAB是O直径,ADB=90,在RtAOC中,CAO=90,AC=8,ADB=90,cosC=cosBED=,AO=6,AB=12,在RtABD中,cosOAD=cosBED=,AD=ABcosOAD=12=考点:1.切线的判定;2.解直角三角形23、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,);(3)y=x+或y=【解析】(1)应用待定系数法求解析式;(
26、1)设出点T坐标,表示TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与AMG全等,分类讨论对应边相等的可能性即可【详解】解:(1)由已知,c=,将B(1,0)代入,得:a=0,解得a=,抛物线解析式为y1=x1- x+,抛物线y1平移后得到y1,且顶点为B(1,0),y1=(x1)1,即y1=-x1+ x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(3,0),C(0,),过点T作TEy轴于E,则TC1=TE1+CE1=11+()1=t1t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=
27、,当TC=AC时,t1t+=,解得:t1=,t1=;当TA=AC时,t1+16=,无解;当TA=TC时,t1t+=t1+16,解得t3=;当点T坐标分别为(1,),(1,),(1,)时,TAC为等腰三角形;(3)如图1:设P(m,),则Q(m,),Q、R关于x=1对称R(1m,),当点P在直线l左侧时,PQ=1m,QR=11m,PQR与AMG全等,当PQ=GM且QR=AM时,m=0,P(0,),即点P、C重合,R(1,),由此求直线PR解析式为y=x+,当PQ=AM且QR=GM时,无解;当点P在直线l右侧时,同理:PQ=m1,QR=1m1,则P(1,),R(0,),PQ解析式为:y=;PR解析式为:y=x+或y=【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键24、(1)见解析;(2)见解析;(3);(4)4.【解析】(1)根据C点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(3)根据点在坐标系中的位置写出其坐标即可(4)利用长方形的面积剪去周围多余三角形的面积即可【详解】解:(1)如图所示:(2)如图所示:(3)结合图形可得:;(4) .【点睛】此题主要考查了作图轴对称变换,关键是确定组成图形的关键点的对称点位置
限制150内