2022-2023学年浙江省台州仙居重点达标名校中考联考数学试卷含解析.doc
《2022-2023学年浙江省台州仙居重点达标名校中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省台州仙居重点达标名校中考联考数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为()ABC6D22将(x+3)2(x1)2分解因式的结果是()A4(2x+2)B8x+8C8(x+1)D 4(x+1)3一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc4ac;4a+2
2、b+c0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个4如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( ) ABCD5小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:ab,xy,x+y,a+b,x2y2,a2b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2y2)a2(x2y2)b2因式分解,结果呈现的密码信息可能是( )A我爱美B宜晶游C爱我宜昌D美我宜昌6用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程( )ABCD7某春季田径运动会上,参加男子跳高的1
3、5名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()ABCD8如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()ABCD9二次函数yax2+bx+c(a0)和正比例函数yx的图象如图所示,则方程ax2+(b+ )x+c0(a0)的两根之和()A大于0B等于0C小于0D不能确定10如图,点D在ABC的边AC上,要判断ADB与ABC相似,添加一个条件,不正确的是( )AABD=CBADB=ABCCD二、填空题(共7小题
4、,每小题3分,满分21分)11某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_ 甲乙丙丁 7887s211.20.91.812已知平面直角坐标系中的点A (2,4)与点B关于原点中心对称,则点B的坐标为_13当a0,b0时化简:_14如图,ABCADE,EAC40,则B_15如图,点A,B在反比例函数(k0)的图象上,ACx轴,BDx轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且BCE的面积是ADE的面积的2倍,则
5、k的值是_16如图,点A、B、C是O上的点,且ACB40,阴影部分的面积为2,则此扇形的半径为_17为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_三、解答题(共7小题,满分69分)18(10分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(2,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交
6、抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由19(5分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表: 组别身高Ax160B160x165C165x170D170x175Ex175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 组,中位数在 组;(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;(3)已知该校共有男生600人,女生480人,请估让身高在165x175之间的学生约有多少人?20(8分)已知圆O的半径长
7、为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设OAC=,请用表示AOD;(2)如图,当点B为的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长21(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关
8、系;过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,如果点M恰好在坐标轴上,请直接写出此时点P的坐标22(10分)如图,已知在RtABC中,ACB=90,ACBC,CD是RtABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AEAC=AGAD,求证:EGCF=EDDF23(12分)如图,在直角坐标系中ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0)(1)请在图中画出ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形ABC(要求与
9、ABC同在P点一侧),画出ABC关于y轴对称的ABC;(2)写出点A的坐标24(14分)解方程:3x22x21参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据题意作出合适的辅助线,可知阴影部分的面积是BCD的面积减去BOE和扇形OEC的面积【详解】由题意可得,BC=CD=4,DCB=90,连接OE,则OE=BC,OEDC,EOB=DCB=90,阴影部分面积为: = =6-,故选C【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答2、C【解析】直接利用平方差公式分解因式即可【详解】(x3)2
10、(x1)2(x3)(x1)(x3)(x1)4(2x2)8(x1)故选C【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键3、B【解析】试题解析:二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=1, 2a+b=0,b0abc04a+2b+c0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.4、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案【详解】解:直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),二元一次方程组的解为故选A.【点
11、睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解5、C【解析】试题分析:(x2y2)a2(x2y2)b2=(x2y2)(a2b2)=(xy)(x+y)(ab)(a+b),因为xy,x+y,a+b,ab四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C考点:因式分解.6、C【解析】设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用张铝片制作瓶身,则用张铝片制作瓶底,依题意可
12、列方程故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.7、C【解析】根据中位数的定义解答即可【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1所以这些运动员跳高成绩的中位数是1.1故选:C【点睛】本题考查了中位数的意义中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数8、C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题【详解】解:由题意可得,y=,当x=40时,y=6,故选C【点睛】本题考查了反比例函数的图象,根据题意列出函数解析
13、式是解决此题的关键9、C【解析】设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论【详解】解:设的两根为x1,x2,由二次函数的图象可知, 设方程的两根为m,n,则 .故选C【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键10、C【解析】由A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用【详解】A是公共角,当ABD=C或ADB=ABC时,ADBABC(有两角对应相等的三角
14、形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,ADBABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,A不是夹角,故不能判定ADB与ABC相似,故C错误,符合题意要求,故选C二、填空题(共7小题,每小题3分,满分21分)11、丙【解析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组故答案为丙【点睛】本题考查了方差:一组数据中各数据与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 浙江省 台州 仙居 重点 达标 名校 中考 联考 数学试卷 解析
限制150内