2022-2023学年广东省化州市高三第二次诊断性检测数学试卷含解析.doc
《2022-2023学年广东省化州市高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省化州市高三第二次诊断性检测数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的一条渐近线倾斜角为,则( )A3BCD2羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从名男生,和名女生,中各随机选出两名,把选出的人随机分成两队进行羽毛球混
2、合双打比赛,则和两人组成一队参加比赛的概率为( )ABCD3已知函数是定义在上的偶函数,当时,则,,的大小关系为( )ABCD4已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )ABCD5设函数满足,则的图像可能是ABCD6曲线在点处的切线方程为,则( )ABC4D87已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为( )ABCD8已知各项都为正的等差数列中,若,成等比数列,则( )ABCD9某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则( )ABCD10在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复
3、数是( )ABCD11一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )ABCD12已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为_.14已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_时,外心的横坐标最大15在平面直角坐标系中,点P在直线上,
4、过点P作圆C:的一条切线,切点为T.若,则的长是_.16在数列中,则数列的通项公式_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由18(12分)设数列是等比数列,已知, (1)求数列的首项和公比;(2)求数列的通项公式19(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.20(12分)随着科技的发展,网络已逐渐融入了人们的生活网购是非常
5、方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差参考公式:0.150.100.0
6、50.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821(12分)已知椭圆的离心率为,点在椭圆上.()求椭圆的标准方程;()设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.22(10分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
7、的。1、D【解析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.2、B【解析】根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【详解】由题可知:分别从3名男生、3名女生中选2人 :将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所
8、求的概率为故选:B【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.3、C【解析】根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,当时,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.4、D【解析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以
9、,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.5、B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B6、B【解析】求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.7、B【解析】由抛物线
10、的定义转化,列出方程求出p,即可得到抛物线方程【详解】由抛物线y22px(p0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,所以抛物线的标准方程为:y22x故选B【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题8、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.9、D【解析】如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.10、A【解析】由复数z求得点Z的坐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东省 化州市 第二次 诊断 检测 数学试卷 解析
限制150内