2022-2023学年安徽马鞍山市高三下学期联合考试数学试题含解析.doc
《2022-2023学年安徽马鞍山市高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽马鞍山市高三下学期联合考试数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )ABCD2“是函数在区间内单调
2、递增”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件3下列函数中,值域为R且为奇函数的是( )ABCD4已知函数,则不等式的解集是( )ABCD5双曲线的渐近线方程是( )ABCD6集合中含有的元素个数为( )A4B6C8D127某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是ABCD8已知为虚数单位,若复数满足,则( )ABCD9如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近( )ABCD10在的展开式中,含的项的系数是( )A74B121CD
3、11如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )A向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变12若执行如图所示的程序框图,则输出的值是( )ABCD4二、填空题:本题共4小题,每小题5分,共20分。13 “北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点远地点离地面的距离大约分别是,则“北斗三号”卫星运行轨道的离心
4、率为_.14已知点M是曲线y2lnxx23x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_15某市公租房源位于、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是_ .(用数字作答)16在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.18(12分)已知数列,其前项和为,若对于任意,且,都有.(1)
5、求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.19(12分)如图,在直三棱柱中,点分别为和的中点.()棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.()求二面角的余弦值.20(12分)(1)求曲线和曲线围成图形的面积;(2)化简求值:21(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.22(10分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四
6、个选项中,只有一项是符合题目要求的。1、B【解析】由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【点睛】本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.2、C【解析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.3、C【
7、解析】依次判断函数的值域和奇偶性得到答案.【详解】A. ,值域为,非奇非偶函数,排除; B. ,值域为,奇函数,排除;C. ,值域为,奇函数,满足; D. ,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.4、B【解析】由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,单调递增,故不等式的解集等价于不等式的解集故选:B【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.5、C【解析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:
8、C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用6、B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B7、B【解析】该几何体是直三棱柱和半圆锥的组合体,其中三棱柱的高为2,底面是高和底边均为4的等腰三角形,圆锥的高为4,底面半径为2,则其体积为,.故选B点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.8、A【解析】分析:题设中复数满足的等式可以化为,利
9、用复数的四则运算可以求出.详解:由题设有,故,故选A.点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.9、A【解析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题10、D【解析】根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 安徽 马鞍山市 下学 联合 考试 数学试题 解析
限制150内