2022-2023学年山东省济宁一中高三最后一卷数学试卷含解析.doc
《2022-2023学年山东省济宁一中高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省济宁一中高三最后一卷数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1一个几何体的三视图如图所示,则该几何体的表面积为( )ABCD842已知点(m,8)在幂函数的图象上,设,则( )AbacBabcCbcaDacb3下列函数中,在区间上单调递减的是( )ABC D4抛物线的焦点为,点是上一点,则( )ABCD5已知集合,则=( )ABCD6复数的虚部是 ( )ABCD7已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D68函数的图象可能是下面的图象( )ABCD9若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是( )A1B-3C1或D-3或10存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,
3、则椭圆离心率的取值范围是( )ABCD11设等差数列的前项和为,若,则( )A21B22C11D1212在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是_14已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是_15函数的值域为_16已知是第二象限角,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.18(12分)已知函数
4、的最小正周期是,且当时,取得最大值(1)求的解析式;(2)作出在上的图象(要列表)19(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.20(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.21(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.()求证:;()若点在线段上,且平面,求二面角的余弦值.22(10分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知
5、该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次设该工厂生产件该产品,记每件产品的平均检验次 数为 (1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个
6、选项中,只有一项是符合题目要求的。1、B【解析】画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2、B【解析】先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【详解】由幂函数的定义可知,m11,m2,点(2,8)在幂函数f(x)xn上,2n8,n3,幂函数解析式为f(x)x3,在R上单调递增,1ln3,n3,abc,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大
7、小,属于中档题.3、C【解析】由每个函数的单调区间,即可得到本题答案.【详解】因为函数和在递增,而在递减.故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.4、B【解析】根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.5、C【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.6、C【解析】因为 ,所以的虚部是 ,故选C.7、C【解析】根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【点睛】本题考
8、查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.8、C【解析】因为,所以函数的图象关于点(2,0)对称,排除A,B当时,所以,排除D选C9、D【解析】由题得,解方程即得k的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2) 点到直线的距离.10、D【解析】根据题意利用垂直直线斜率间的关系建立不等式再求
9、解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.11、A【解析】由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以 ,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.12、A【解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 山东省 济宁 一中 最后 一卷 数学试卷 解析
限制150内