《2022-2023学年湖南省芷江县岩桥中学中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖南省芷江县岩桥中学中考联考数学试题含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )ABCD2已知是二元一次方程组的解,则的算术平方根为( )A2BC2D43图为一根圆柱形的空心钢管,它的主视图是( )ABCD4如果m的倒数是1,那么m2018等于()A1B1C2018D20185若关于的方程的两根互为倒数,则的
2、值为()AB1C1D06如图,在平面直角坐标系中,正方形的顶点在轴上,且,则正方形的面积是( )ABCD7在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah例如:三点坐标分别为A(1,2),B(3,1),C(2,2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1若D(1,2)、E(2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A3或7 B4或6 C4或7 D3或68数据3、6、7、1、7、2、9的中位数和众数分别是()A1和7B1和9C6和
3、7D6和99下列二次根式中,的同类二次根式是()ABCD10一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A65B90C25D85二、填空题(共7小题,每小题3分,满分21分)11如图,ABC中,ACB=90,ABC=25,以点C为旋转中心顺时针旋转后得到ABC,且点A在AB上,则旋转角为_. 12在平面直角坐标系中,P的圆心是(2,a)(a2),半径为2,函数y=x的图象被P截得的弦AB的长为,则a的值是_13如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等问这个正方形的边长应为多少厘米?设
4、正方形边长为xcm,则可列方程为_14如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心大于MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是_15若代数式的值为零,则x=_16已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_17若关于x的不等式组恰有3个整数解,则字母a的取值范围是_三、解答题(共7小题,满分69分)18(10分)综合与实践:概念理解:将ABC 绕点 A 按逆时针方向旋转,旋转角记为 (090),并使各边长变为原来的 n 倍,得到ABC,如图,我们将这种变换记为,n,:
5、 问题解决:(2)如图,在ABC 中,BAC=30,ACB=90,对ABC 作变换,n得到ABC,使点 B,C,C在同一直线上,且四边形 ABBC为矩形,求 和 n 的值拓广探索:(3)在ABC 中,BAC=45,ACB=90,对ABC作变换 得到ABC,则四边形 ABBC为正方形19(5分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间20(8分)一个不透明的袋子中装有红、白两
6、种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)21(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图这次调查的市民人数为_人,m_,n_;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心
7、价值观”达到“A.非常了解”的程度22(10分)如图,已知在RtABC中,ACB=90,ACBC,CD是RtABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AEAC=AGAD,求证:EGCF=EDDF23(12分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元152025y/件252015已知日销售量y是销售价x的一次函数求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?24(14分)在
8、平面直角坐标系中,已知直线yx+4和点M(3,2)(1)判断点M是否在直线yx+4上,并说明理由;(2)将直线yx+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;(3)另一条直线ykx+b经过点M且与直线yx+4交点的横坐标为n,当ykx+b随x的增大而增大时,则n取值范围是_参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图2、C【解析】二元一次方程组的解和解二元一次方
9、程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即的算术平方根为1故选C3、B【解析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.4、A【解析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.5、C【解析】根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值【详解】解:设、是的
10、两根,由题意得:,由根与系数的关系得:,k2=1,解得k=1或1,方程有两个实数根,则,当k=1时,k=1不合题意,故舍去,当k=1时,符合题意,k=1, 故答案为:1【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键6、D【解析】作BEOA于点E.则AE=2-(-3)=5,AODBEA(AAS),OD=AE=5, ,正方形的面积是: ,故选D.7、C【解析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 2或t1两种情况进行求解即可.【详解】解:由题可知a=3,则h=183=6,则可知t2或t1.当t2时,t-1=
11、6,解得t=7;当t1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.8、C【解析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数【详解】解:7出现了2次,出现的次数最多,众数是7;从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,中位数是6故选C【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义9、C
12、【解析】先将每个选项的二次根式化简后再判断.【详解】解:A:,与不是同类二次根式;B:被开方数是2x,故与不是同类二次根式;C:=,与是同类二次根式;D:=2,与不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的概念.10、B【解析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=13,所以圆锥的表面积=52+2513=90故选B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周
13、长,扇形的半径等于圆锥的母线长也考查了三视图二、填空题(共7小题,每小题3分,满分21分)11、50度【解析】由将ACB绕点C顺时针旋转得到ABC,即可得ACBABC,则可得A=BAC,AAC是等腰三角形,又由ACB中,ACB=90,ABC=25,即可求得A、BAB的度数,即可求得ACB的度数,继而求得BCB的度数【详解】将ACB绕点C顺时针旋转得到,ACB,A=BAC,AC=CA,BAC=CAA,ACB中,ACB=90,ABC=25,BAC=90ABC=65,BAC=CAA=65,BAB=1806565=50,ACB=180255065=40,BCB=9040=50.故答案为50.【点睛】此
14、题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用12、2+【解析】试题分析:过P点作PEAB于E,过P点作PCx轴于C,交AB于D,连接PAPEAB,AB=2,半径为2, AE=AB=,PA=2, 根据勾股定理得:PE=1,点A在直线y=x上,AOC=45,DCO=90, ODC=45,OCD是等腰直角三角形, OC=CD=2, PDE=ODC=45,DPE=PDE=45, DE=PE=1, PD=P的圆心是(2,a), a=PD+DC=2+【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等
15、难度的题型解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45,这一个条件的应用也是很重要的13、4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x4).14、a+b=1【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.15、3【解析】由题意得,=0,解得:x=3,经检验的x=3是原方程的根16、等【解析】根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,所以解析式满足a0,b=0
16、,c=0即可【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.17、2a1【解析】先确定不等式组的整数解,再求出a的范围即可【详解】关于x的不等式组恰有3个整数解,整数解为1,0,1,2a1,故答案为:2a1【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键三、解答题(共7小题,满分69分)18、(1);(2);(3)【解析】(1)根据定义可知ABCABC,再根据相似三角形的面积之比等于相
17、似比的平方即可;(2)根据四边形是矩形,得出,进而得出,根据30直角三角形的性质即可得出答案;(3)根据四边形 ABBC为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案【详解】解:(1)ABC的边长变为了ABC的n倍,ABCABC,故答案为:(2)四边形是矩形,在中,(3)若四边形 ABBC为正方形,则,又在ABC中,AB=,故答案为:【点睛】本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解,n的意义是解题的关键19、4小时.【解析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度客车由普通公路的速度+45,列出方程,解出检验并作答【详解】解:设客车由高速
18、公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得: 解得x4经检验,x4原方程的根,答:客车由高速公路从甲地到乙地需4时【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键根据速度路程时间列出相关的等式,解答即可20、(1)袋子中白球有2个;(2)见解析, .【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x2,经检验,x2是原分式
19、方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:【点睛】此题考查了列表法或树状图法求概率注意掌握方程思想的应用注意概率=所求情况数与总情况数之比21、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A非常了解”的人数为:32%500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百
20、分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数【详解】试题分析:试题解析:(1)28056%=500人,60500=12%,156%12%=32%,(2)对“社会主义核心价值观”达到“A非常了解”的人数为:32%500=160,补全条形统计图如下:(3)10000032%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A非常了解”的程度22、证明见解析【解析】试题分析:(1)根据已知求得BDF=BCD,再根据BFD=DFC,证明BFDDFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明AEGADC,得到AEG=ADC=90,
21、从而得EGBC,继而得 ,由(1)可得 ,从而得 ,问题得证.试题解析:(1)ACB=90,BCD+ACD=90,CD是RtABC的高,ADC=BDC=90,A+ACD=90,A=BCD,E是AC的中点,DE=AE=CE,A=EDA,ACD=EDC,EDC+BDF=180-BDC=90,BDF=BCD,又BFD=DFC,BFDDFC,BF:DF=DF:FC,DF2=BFCF;(2)AEAC=EDDF, ,又A=A,AEGADC,AEG=ADC=90,EGBC, ,由(1)知DFDDFC, , ,EGCF=EDDF.23、();()此时每天利润为元【解析】试题分析:(1) 根据题意用待定系数法即
22、可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,;()将代入()中函数表达式得:,利润(元),答:此时每天利润为元24、(1)点M(1,2)不在直线y=x+4上,理由见解析;(2)平移的距离为1或2;(1)2n1【解析】(1)将x=1代入y=-x+4,求出y=-1+4=12,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b分两种情况进行讨论:点M(1,2)关于x轴的对称点为点M1(1,-2);点M(1,2)关于y轴的对称点为点M2(-1,2)分别求出b的
23、值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=根据y=kx+b随x的增大而增大,得到k0,即0,那么,或,分别解不等式组即可求出n的取值范围【详解】(1)点M不在直线y=x+4上,理由如下:当x=1时,y=1+4=12,点M(1,2)不在直线y=x+4上;(2)设直线y=x+4沿y轴平移后的解析式为y=x+4+b点M(1,2)关于x轴的对称点为点M1(1,2),点M1(1,2)在直线y=x+4+b上,2=1+4+b,b=1,即平移的距离为1;点M(1,2)关于y轴的对称点为点M2(1,2),点M2(1,2)在直线y=x+4+b上,2=1+4+b,b=2,即平移的距离为2综上所述,平移的距离为1或2;(1)直线y=kx+b经过点M(1,2),2=1k+b,b=21k直线y=kx+b与直线y=x+4交点的横坐标为n,y=kn+b=n+4,kn+21k=n+4,k=y=kx+b随x的增大而增大,k0,即0,或,不等式组无解,不等式组的解集为2n1n的取值范围是2n1故答案为2n1【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握
限制150内