2022-2023学年山东省滨州市五校联考高三适应性调研考试数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年山东省滨州市五校联考高三适应性调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省滨州市五校联考高三适应性调研考试数学试题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD2已知等差数列的前项和为,则( )A25B32C35D403已
2、知集合,集合,则等于( )ABCD4函数在上的最大值和最小值分别为( )A,-2B,-9C-2,-9D2,-25若集合,则下列结论正确的是( )ABCD6已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、分别为侧棱,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为( )ABCD7设,是两条不同的直线,是两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则;其中真命题的个数为( )ABCD8已知复数,(为虚数单位),若为纯虚数,则()AB2CD9据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,
3、CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )ACPI一篮子商品中所占权重最大的是居住BCPI一篮子商品中吃穿住所占权重超过50%C猪肉在CPI一篮子商品中所占权重约为2.5%D猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%10已知等差数列的前项和为,且,则( )A45B42C25D3611某几何体的三视图如右图所示,则该几何体的外接球表面积为( )ABCD12已知,若,则实数的值是()A-1B7C1D1或7二、填空题:本题共4小题,每小题5分,共20分。13已知,则_.
4、(填“”或“=”或“”).14戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_种(用数字作答),15的展开式中,的系数为_.16已知函数,则_;满足的的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.18(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试
5、判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由19(12分)已知的内角,的对边分别为,(1)若,证明:(2)若,求的面积20(12分)已知椭圆的离心率为,点在椭圆上.()求椭圆的标准方程;()设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.21(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.22(10分)如图,在正四棱锥中,点、分别在线段、上,(1)若,求证:;(2)若二面角的大小为,求线段的长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出
6、的四个选项中,只有一项是符合题目要求的。1、D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.2、C【解析】设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得【详解】设等差数列的首项为,公差为,则
7、,解得,即有故选:C【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题3、B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.4、B【解析】由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.5、D【解析】由题意
8、,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.6、D【解析】如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,
9、意在考查学生的计算能力和空间想象能力.7、C【解析】利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知正确;当直线平行于平面与平面的交线时也有,故错误;若,则垂直平面内以及与平面平行的所有直线,故正确;若,则存在直线且,因为,所以,从而,故正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.8、C【解析】把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可【详解】,为纯虚数,解得故选C【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 山东省 滨州市 联考 适应性 调研 考试 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内