2022-2023学年山东省平度市高三二诊模拟考试数学试卷含解析.doc





《2022-2023学年山东省平度市高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省平度市高三二诊模拟考试数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )ABCD2已
2、知函数,若方程恰有两个不同实根,则正数m的取值范围为( )ABCD3已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( )ABCD4执行如图所示的程序框图,若输出的,则处应填写( )ABCD5已知直线y=k(x+1)(k0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA| =( )A1B2C3D46若单位向量,夹角为,且,则实数( )A1B2C0或1D2或17已知正项数列满足:,设,当最小时,的值为( )ABCD8设全集集合,则( )ABCD9已知集合,则的子集共有( )A个B个C个D个10高三珠海一模中,经抽样分析,全市理科数学成绩
3、X近似服从正态分布,且从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D10011若复数满足,则对应的点位于复平面的( )A第一象限B第二象限C第三象限D第四象限12已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13如图,两个同心圆的半径分别为和,为大圆的一条 直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括 两点),则的最大
4、值是_14若,则_.15设全集,则_.16定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.18(12分)如图,D是在ABC边AC上的一点,BCD面积是ABD面积的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求边AC的长19(12分)已知.
5、(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.20(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.21(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望22(10分)设函数其中()若曲线在点处
6、切线的倾斜角为,求的值;()已知导函数在区间上存在零点,证明:当时,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:,解得,或(舍去),直线的方程为,设直线与抛物线的另一个交点为,由,解得或,故直线被截得的弦长为故选:B【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.2、D【解析】当时,函数周期为,画出函数图像,如图所
7、示,方程两个不同实根,即函数和有图像两个交点,计算,根据图像得到答案.【详解】当时,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,故,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.3、A【解析】建立平面直角坐标系,求出直线,设出点,通过,找出与的关系通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线 , 设点, 所以 由得 ,即 ,所以,由及,解得,由二次函数的图像知,所以的取值范围是
8、故选A【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用4、B【解析】模拟程序框图运行分析即得解.【详解】;.所以处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.5、C【解析】方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以
9、由等腰三角形三线合一得点的横坐标为,所以,所以方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又 由得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.6、D【解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,即,解得或.故选:D【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.7、B【解析】由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 山东省 平度市 高三二诊 模拟考试 数学试卷 解析

限制150内