2022-2023学年江苏淮安曙光双语校中考数学五模试卷含解析.doc
《2022-2023学年江苏淮安曙光双语校中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏淮安曙光双语校中考数学五模试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A中位数B众数C平均数D方差2如图,O的半径OD弦AB于点C
2、,连接AO并延长交O于点E,连接EC,若AB=8,CD=2,则cosECB为()ABCD3学校小组名同学的身高(单位:)分别为:,则这组数据的中位数是( )ABCD4计算的结果为()ABCD5对于实数x,我们规定表示不大于x的最大整数,例如,若,则x的取值可以是( )A40B45C51D566如图,已知ABAD,那么添加下列一个条件后,仍无法判定ABCADC的是( )ACBCDBBCADCACBACDACDBD907下列说法中,正确的是()A不可能事件发生的概率为0B随机事件发生的概率为C概率很小的事件不可能发生D投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次8在平面直角坐标系xO
3、y中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()Ay1By2Cy3Dy49如图,在中,、分别为、边上的点,与相交于点,则下列结论一定正确的是( )ABCD10在ABC中,点D、E分别在AB、AC上,如果AD2,BD3,那么由下列条件能够判定DEBC的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高
4、峰时段的用电单价低的百分率是_12观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_(用含n的代数式表示)13如果,那么_14如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_(写出一个即可)15如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_16关于x的一元二次方程x22kx+k2k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12x1x2+x22的值是_17已知b是a,c的比例中项,若a=4,c=16,则b=_三、解答
5、题(共7小题,满分69分)18(10分)如图,在ABC中,AB=AC,点P、D分别是BC、AC边上的点,且APD=B,求证:ACCD=CPBP;若AB=10,BC=12,当PDAB时,求BP的长19(5分)先化简,再求值,其中x=120(8分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k0)的图象经过点B求反比例函数的解析式;若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积21(10分)计算:4cos30+20180+|1|22(10分)如图,O的半径为4,B为O外一点,连结OB,且OB6.过点B作O的切线BD,切点
6、为点D,延长BO交O于点A,过点A作切线BD的垂线,垂足为点C(1)求证:AD平分BAC;(2)求AC的长23(12分)我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定24(14分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若B
7、AC=30,AC=4,求菱形OCED的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数故选A点睛:本题主要考查了中位数,关键是掌握中位数定义2、D【解析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度利用锐角三角函数的定义即可求
8、出答案【详解】解:连接EB,由圆周角定理可知:B=90,设O的半径为r,由垂径定理可知:AC=BC=4,CD=2,OC=r-2,由勾股定理可知:r2=(r-2)2+42,r=5,BCE中,由勾股定理可知:CE=2,cosECB=,故选D【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型3、C【解析】根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处
9、在中间位置的一个数(或最中间两个数据的平均数)称为中位数.4、A【解析】根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要考查分式的运算。5、C【解析】解:根据定义,得解得:故选C6、B【解析】由图形可知ACAC,结合全等三角形的判定方法逐项判断即可.【详解】解:在ABC和ADC中ABAD,ACAC,当CBCD时,满足SSS,可证明ABCACD,故A可以;当BCADCA时,满足SSA,不能证明ABCACD,故B不可以;当BACDAC时,满足SAS,可证明ABCACD,故C可以;当BD90时,满足HL,可证明ABCACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法
10、,熟练掌握判定定理是解题关键.7、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A考点:随机事件8、A【解析】由图象的点的坐标,根据待定系数法求得解析式即可判定【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 江苏 淮安 曙光 双语 中考 数学 试卷 解析
限制150内