2022-2023学年崇左市重点中学高三第二次调研数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年崇左市重点中学高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年崇左市重点中学高三第二次调研数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,以下结论正确的个数为( )当时,函数的图象的对称中心为;当时,函数在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D42已知函数,则的最小值为( )ABC
2、D3已知函数,则方程的实数根的个数是( )ABCD4设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )A1BCD5执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD6已知,则的值构成的集合是( )ABCD72019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学
3、位.现知道:甲不是军事科学院的;来自军事科学院的不是博士;乙不是军事科学院的;乙不是博士学位;国防科技大学的是研究生则丙是来自哪个院校的,学位是什么( )A国防大学,研究生B国防大学,博士C军事科学院,学士D国防科技大学,研究生8设集合则( )ABCD9设复数,则=( )A1BCD10已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD11如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )ABCD12某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为(
4、 )ABCD二、填空题:本题共4小题,每小题5分,共20分。13边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为_.14的展开式中的系数为_(用具体数据作答).15已知数列an的前n项和为Sn,向量(4,n),(Sn,n+3).若,则数列前2020项和为_16假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)每年3月20日是国际幸福日,某电视台随机调查某
5、一社区人们的幸福度现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶若幸福度不低于8.5分,则称该人的幸福度为“很幸福”()求从这18人中随机选取3人,至少有1人是“很幸福”的概率;()以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及18(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方
6、程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:点的极角;面积的取值范围.19(12分)设函数()的最小值为.(1)求的值;(2)若,为正实数,且,证明:.20(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.21(12分)已知函数f(x)axlnx(aR).(1)若a2时,求函数f(x)的单调区间;(2)设g(x)f(x)1,若函数g(x)在上有两个零点,求实
7、数a的取值范围.22(10分)设,其中(1)当时,求的值;(2)对,证明:恒为定值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】逐一分析选项,根据函数的对称中心判断;利用导数判断函数的单调性;先求函数的导数,若满足条件,则极值点必在区间;利用导数求函数在给定区间的最值.【详解】为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确由题意知因为当时,又,所以在上恒成立,所以函数在上为单调递减函数,正确由题意知,当时,此时在上为增函数,不合题意,故令,解得因为在上不单调,所以在上有解,需,解得,正确
8、令,得根据函数的单调性,在上的最大值只可能为或因为,所以最大值为64,结论错误故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.2、C【解析】利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【详解】由于,故其最小值为:.故选:C.【点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.3、D【解析】画出函数 ,将方程看作交点个数,运用图象判断根的个数【详解】画出函数令有两解 ,则分别有3个,2个解,故方程的实数根的个数是3+2=5个故选:D【点睛】本题综合考查了函数的图象的运用,分类思
9、想的运用,数学结合的思想判断方程的根,难度较大,属于中档题4、A【解析】设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.5、B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为
10、11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.6、C【解析】对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.7、C【解析】根据可判断丙的院校;由和可判断丙的学位.【详解】由题意甲不是军事科学院的,乙不是军事科学院的;则丙来自军事科学院;由来自军事科学院的不是博士,则丙不是博士;由国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 崇左 重点中学 第二次 调研 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内