2022-2023学年山东省利津县中考数学考前最后一卷含解析.doc
《2022-2023学年山东省利津县中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省利津县中考数学考前最后一卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果将直线l1:y2x2平移后得到直线l2:y2x,那么下列平移过程正确的是()A将l1向左平移2个单位B将l1向右平移2个单位C将l1向上平移2个单位D将l1向下平移2个单位2如图,如果
2、从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A6cmBcmC8cmDcm3在同一直角坐标系中,函数y=kx-k与(k0)的图象大致是 ( )ABCD4如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是21,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A0.2B0.25C0.4D0.55若正比例函数ykx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()AB3CD36已知是二元一次方程组的解,
3、则的算术平方根为( )A2BC2D47若,则的值为( )A12B2C3D08如图,AB为O的直径,C为O上的一动点(不与A、B重合),CDAB于D,OCD的平分线交O于P,则当C在O上运动时,点P的位置()A随点C的运动而变化B不变C在使PA=OA的劣弧上D无法确定9如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D610下列关于x的方程中一定没有实数根的是( )ABCD11如图,在等腰直角ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是()A
4、BCD12一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A30厘米、45厘米; B40厘米、80厘米; C80厘米、120厘米; D90厘米、120厘米二、填空题:(本大题共6个小题,每小题4分,共24分)13三角形两边的长是3和4,第三边的长是方程x214x+48=0的根,则该三角形的周长为_14已知,在RtABC中,C=90,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=31将CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰
5、好是ABC的平分线,此时线段CD的长是_.152017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为_16比较大小:_117若二次根式有意义,则x的取值范围为_18如果某数的一个平方根是5,那么这个数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,C是O上一点,点P在直径AB的延长线上,O的半径为3,PB=2,PC=1(1)求证:PC是O的切线(2)求tanCAB的值20(6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60m100),组委会从1000篇征文中随机抽取了部分
6、参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表征文比赛成绩频数分布表分数段频数频率60m70380.3870m80a0.3280m90bc90m100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数21(6分)如图,在RtABC中,C=90,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DEAB;若DB=4,BC=8,求AE的长.22(8分)如图所示,一幢楼房AB背
7、后有一台阶CD,台阶每层高0.2米,且AC17.2米,设太阳光线与水平地面的夹角为,当60时,测得楼房在地面上的影长AE10米,现有一老人坐在MN这层台阶上晒太阳(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当45时,问老人能否还晒到太阳?请说明理由23(8分)如图,在直角坐标系中ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0)(1)请在图中画出ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形ABC(要求与ABC同在P点一侧),画出ABC关于y轴对称的ABC;(2)写出点A的坐标24(10分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C)
8、,测得俯角分别为15和60,如图,直线AB与地面垂直,AB50米,试求出点B到点C的距离(结果保留根号)25(10分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,求点Q的坐标. 26(12分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单
9、价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?27(12分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 时,求的长(结果保留 );若APO的外心在扇形COD的内部,求OC的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)
10、1、C【解析】根据“上加下减”的原则求解即可【详解】将函数y2x2的图象向上平移2个单位长度,所得图象对应的函数解析式是y2x故选:C【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键2、B【解析】试题分析:从半径为9cm的圆形纸片上剪去圆周的一个扇形,留下的扇形的弧长=12,根据底面圆的周长等于扇形弧长,圆锥的底面半径r=6cm,圆锥的高为=3cm故选B.考点: 圆锥的计算3、D【解析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k0)所经过象限,即可得出答案.【详解】解:有两种情况,当k0是时,一次函数y=kx-k的图象经过一、三、四象限,反
11、比例函数(k0)的图象经过一、三象限;当k0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.4、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是;故选:B【点睛】本题考查了概率公式:如果一个事
12、件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率5、B【解析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=1,再利用正比例函数的性质可得出k=-1,此题得解【详解】设该点的坐标为(a,b),则|b|1|a|,点(a,b)在正比例函数ykx的图象上,k1又y值随着x值的增大而减小,k1故选:B【点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=1是解题的关键6、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即
13、的算术平方根为1故选C7、A【解析】先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值【详解】,故选:A【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键8、B【解析】因为CP是OCD的平分线,所以DCP=OCP,所以DCP=OPC,则CDOP,所以弧AP等于弧BP,所以PA=PB从而可得出答案【详解】解:连接OP,CP是OCD的平分线,DCP=OCP,又OC=OP,OCP=OPC,DCP=OPC,CDOP,又CDAB,OPAB,PA=PB点P是线段AB垂直平分线和圆的交点,当C在O上运动时,点P不动故选:B【点睛】本题考查了圆心角、
14、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦9、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数10、B【解析】根据根的判别式的概念,求出的正负即可解题.【详解】解: A. x2-x-1=0,=1+4=50,原方程有两个不相等的实数根,B. ,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 山东省 利津县 中考 数学 考前 最后 一卷 解析
限制150内