2022-2023学年广东省汕头市六都中学高考数学考前最后一卷预测卷含解析.doc
《2022-2023学年广东省汕头市六都中学高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省汕头市六都中学高考数学考前最后一卷预测卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1下列函数中,既是奇函数,又在上是增函数的是( )ABCD2已知双曲线:,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( )ABCD3已知函数,若存在实数,使成立,则正数的取值范围为()ABCD4达芬奇的经典之作蒙娜丽莎举世闻名.如图,画中女子神秘的微笑,数百年来让无数观赏者人迷.某业余爱好者对蒙娜丽莎的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将蒙娜丽莎中女子的嘴唇视作的圆弧对应的圆心角大约等于( )ABCD5已知为定义在上的奇函数,且满足当时
3、,则( )ABCD6设,命题“存在,使方程有实根”的否定是( )A任意,使方程无实根B任意,使方程有实根C存在,使方程无实根D存在,使方程有实根7已知数列为等差数列,为其前项和,则( )A7B14C28D848已知集合,则( )ABCD9已知复数满足,则( )AB2C4D310已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD11若是第二象限角且sin =,则=ABCD12定义在上的偶函数,对,且,有成立,已知,则,的大小关系为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设全集,则_.14(5分)已知曲线的方程为,其图象经过
4、点,则曲线在点处的切线方程是_15已知向量,满足,则的取值范围为_.16已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面为等腰梯形,为等腰直角三角形,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.18(12分)已知函数,函数.()判断函数的单调性;()若时,对任意,不等式恒成立,求实数的最小值.19(12分)设数列的前项和为,且,数列满足,点在上, (1)求数列,的通项公式;(2)设,求数列的前项和20(12分)如图,已知四边形的直角梯
5、形,BC,为线段的中点,平面,为线段上一点(不与端点重合)(1)若,()求证:PC平面;()求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由21(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作设(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值22(10分)某企业对设备进行
6、升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.图:设备改造前样本的频率分布直方图表:设备改造后样本的频率分布表质量指标值频数2184814162(1)求图中实数的值;(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自
7、在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考
8、查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.2、D【解析】由|AF2|3|BF2|,可得.设直线l的方程xmy+,m0,设,即y13y2,联立直线l与曲线C,得y1+y2-,y1y2,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程xmy+,m0,双曲线的渐近线方程为x2y,m2,设A(x1,y1),B(x2,y2),且y10,由|AF2|3|BF2|,y13y2由,得(2m)24(m24)0,即m2+40恒成立,y1+y2,y1y2,联立得,联立得,即:,解得:,直线的斜率为,故选D【点睛】本题考查直线与
9、双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题3、A【解析】根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,由题意得,即,令,在上单调递增,在上单调递减,而,当且仅当,即当时,等号成立,.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.4、A【解析】由已知,设可得于是可得,进而得出结论【详解】解:依题意,设则,设蒙娜丽莎中女子的嘴唇视作的圆弧对应的圆心角为则,故选:A【点睛】本题考查了直角三角形的边
10、角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题5、C【解析】由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,则函数的周期是,所以,又函数为上的奇函数,且当时,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.6、A【解析】只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东省 汕头市 中学 高考 数学 考前 最后 一卷 预测 解析
限制150内