2022-2023学年四川省攀枝花市属高中高三最后一卷数学试卷含解析.doc
《2022-2023学年四川省攀枝花市属高中高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省攀枝花市属高中高三最后一卷数学试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()ABCD2函数的图象大致为( )ABCD3已知函数的图像上有且仅有四个不同的点关于直线的对
2、称点在的图像上,则实数的取值范围是( )ABCD4已知平面向量,则实数x的值等于( )A6B1CD5世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是( )ABCD6执行如图所示的程序框图,若输入,则输出的( )A4B5C6D77设命题p:1,n22n,则p为( )ABCD8已知集合,若,则实数的取值范围为( )ABCD9国务院发布关于进一步调整优化结构、提高教育经费使用效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教
3、育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年10已知不重合的平面 和直线 ,则“ ”的充分不必要条件是( )A内有无数条直线与平行B 且C 且D内的任何直线都与平行11已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i12如图,在等腰梯形中,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是( )
4、ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数为偶函数,则_.14已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,当面积最大时,直线的方程为_.15已知角的终边过点,则_.16已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.(1)求曲线的方程;(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此
5、时直线的方程.18(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,求直线的斜率.19(12分)据人民网报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙6184843110527409413600690382695
6、0河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区
7、中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.20(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值21(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.22(10分)在中,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60,连接,如图:(1)证明:平面平
8、面(2)求平面与平面所成二面角的大小.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.2、A【解析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故
9、选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项3、A【解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数
10、研究函数增减性,找准临界是解题的关键,属于中档题4、A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.5、C【解析】列出循环的每一步,可得出输出的的值.【详解】,输入,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.6、C【解析】根据程序框图程序运算即可得.【详解
11、】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.7、C【解析】根据命题的否定,可以写出:,所以选C.8、A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.9、C【解析】观察图表,判断四个选项是否正确【详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误【点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 四川省 攀枝花 市属 高中 最后 一卷 数学试卷 解析
限制150内