2022-2023学年广西南宁市第三十六中学高考压轴卷数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年广西南宁市第三十六中学高考压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西南宁市第三十六中学高考压轴卷数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前n项和为,且,则( )A4B8C16D22设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则( )ABCD3已知满足,,则在上的投影为()ABCD24已知函数(e为自然对数底数),若关于x的不
2、等式有且只有一个正整数解,则实数m的最大值为( )ABCD5已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD6如图所示程序框图,若判断框内为“”,则输出( )A2B10C34D987设命题:,则为A,B,C,D,8已知角的终边经过点,则ABCD9已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD10函数的最大值为,最小正周期为,则有序数对为( )ABCD11在中,则=( )ABCD12若复数,其中是虚数单位,则的最大值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知非零向量的夹角为,且,则_.14农历五月初五是端午节,民间有吃粽子的习
3、惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为_;若该六面体内有一球,则该球体积的最大值为_15如图,两个同心圆的半径分别为和,为大圆的一条 直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括 两点),则的最大值是_16若函数为偶函数,则 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,其中(1)当时,设函数,求函数的极值(2)若函
4、数在区间上递增,求的取值范围;(3)证明:18(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.19(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.20(12分)如图,三棱锥中,点,分别为,的中点,且平面平面求证:平面;若,求证:平面平面.21(12分)每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:)与网上预约出租车订单数(单位:份);日平
5、均气温()642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.附:回归直线的斜率和截距的最小二乘法估计分别为:22(10分)已知,均为正项数列,其前项和分别为,且,当,时,.(1)求数列,的通项公式;(2)设,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小
6、题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.2、C【解析】画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,设,则直线,即,与联立,解得,从而得到面积比为.故选:【点睛】解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.3、A【解析】根据向量投影的定义,即可
7、求解.【详解】在上的投影为.故选:A【点睛】本题考查向量的投影,属于基础题.4、A【解析】若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【详解】解:,设,当时,函数单调递增,当时,函数单调递减,当时,当,函数恒过点,分别画出与的图象,如图所示,若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,且,即,且,故实数m的最大值为,故选:A【点睛】本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.5、D【解析】由变形可得,可知函数在为增函数, 由恒
8、成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.6、C【解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,;,;,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.7、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,
9、.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.8、D【解析】因为角的终边经过点,所以,则,即.故选D9、C【解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.10、B【解析】函数(为辅助角)函数的最大值为,最小正周期为故选B11、B【解析】在上分别取点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广西 南宁市 第三 十六 中学 高考 压轴 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内