2022-2023学年广西柳州市城中学区中考数学押题卷含解析.doc
《2022-2023学年广西柳州市城中学区中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西柳州市城中学区中考数学押题卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列四个图形中,既是轴对称图形又是中心对称图形的是()ABCD2不等式的解集在数轴上表示正确的是(
2、)ABCD3如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3cm,则滑轮上的点F旋转了( )A60B90C120D4544的平方根是()A2B2C8D85在平面直角坐标系中,位于第二象限的点是()A(1,0)B(2,3)C(2,1)D(3,1)6据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为ABCD7绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率0.960
3、0.9400.9550.9500.9480.9520.950下面有三个推断:当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;根据上表,估计绿豆发芽的概率是0.95;若n为4000,估计绿豆发芽的粒数大约为3800粒其中推断合理的是()ABCD8如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式ya(xk)2+h已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A球不会过网B球会过球网
4、但不会出界C球会过球网并会出界D无法确定9中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )ABCD10下列式子一定成立的是()A2a+3a=6aBx8x2=x4CD(a2)3=11如图,ABC的面积为8cm2 , AP垂直B的平分线BP于P,则PBC的面积为( )A2cm2B3cm2C4cm2D5cm212已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A1B2C3D4二、填空题:(本大题共6个小题,每小题4分,共24分)13若一个多边形的内角和为1080,则这个多边形的边数为_14如图,矩形ABCD中,AD=5,CAB=30,点P是线段AC上的动点
5、,点Q是线段CD上的动点,则AQ+QP的最小值是_15若一次函数y=2(x+1)+4的值是正数,则x的取值范围是_16如图,在ABC和EDB中,CEBD90,点E在AB上若ABCEDB,AC4,BC3,则AE_17将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_18分解因式6xy29x2yy3 = _.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的
6、速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FGx轴,则此段时间,甲机器人的速度为 米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米20(6分)如图,一次函数y=k1x+b(k10)与反比例函数的图象交于点A(-1,2),B(m,-1)求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使ABP为等腰三
7、角形,请你直接写出P点的坐标21(6分)如图,在ABC中,A45,以AB为直径的O经过AC的中点D,E为O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为O的切线;若F为OA的中点,O的半径为2,求BE的长.22(8分)如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右
8、侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?23(8分)解不等式组:24(10分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元若该公司对此项计划的投资不低于1536万元,不高于1552万元请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.
9、5全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25(10分)如图,已知ABC=90,AB=BC直线l与以BC为直径的圆O相切于点C点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D如果BE=15,CE=9,求EF的长;证明:CDFBAF;CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由26(12分)如图,已知点E,F分别是ABCD的边BC,AD上的中点,且BAC=90(1)求证:四边形AECF是菱形;(2)若B=30,BC=10,
10、求菱形AECF面积27(12分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对
11、称图形,是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、B【解析】根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可【详解】解:解:移项得,x3-2,合并得,x1;在数轴上表示应包括1和它左边的部分,如下:;故选:B【点睛】本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示3、B【解析】由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3代入,可得n =9
12、0,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.4、B【解析】依据平方根的定义求解即可【详解】(1)1=4,4的平方根是1故选B【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键5、D【解析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(3,1)符合,故选:D【点睛】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.6、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小
13、数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】解:5657万用科学记数法表示为,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值7、D【解析】利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,错误;利用频率估计概率,大量反复试验下频率稳定值即概率,可得正确;用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,正确【详解】当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;根据上表当每批粒数足够大时,频率
14、逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;若n为4000,估计绿豆发芽的粒数大约为40000.950=3800粒,此结论正确故选D【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比8、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得详解:根据题意,将点A(0,2)代入 得:36a+2.6=2,解得: y与x的关系式为 当x=9时, 球能过球网,当x=18时, 球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求
15、出自变量的值,根据题意确定范围.9、C【解析】根据中心对称图形的概念进行分析【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C【点睛】考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合10、D【解析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;B:x8x2=x8-2=x6,故B错误;C:=,故C错误;D:(-a-2)3=-a-6=-,故D正确.故选D.【点睛】本题考查
16、了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.11、C【解析】延长AP交BC于E,根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积相等,即可求得PBC的面积【详解】延长AP交BC于EAP垂直B的平分线BP于P,ABPEBP,APBBPE90在APB和EPB中,APBEPB(ASA),SAPBSEPB,APPE,APC和CPE等底同高,SAPCSPCE,SPBCSPBE+SPCESABC4cm1故选C【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出SPBCSPB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广西 柳州市 学区 中考 数学 押题 解析
限制150内