2022-2023学年拉萨市中考猜题数学试卷含解析.doc
《2022-2023学年拉萨市中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年拉萨市中考猜题数学试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )ABCD2如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30 B45 C50 D603如图,
2、四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )ABCD4如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得CAD=60,BCA=30,AC=15 m,那么河AB宽为( )A15 mB mC mD m5如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律则第(6)个图形中面积为1的正方形的个数为( )A20B27C35D406函数y=中,x的取值范围
3、是()Ax0Bx2Cx2Dx27如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C20D228一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD9对于代数式ax2+bx+c(a0),下列说法正确的是( ) 如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)存在三个实数mns,使得am2+bm+c=an2+bn+c=as2+bs+c如果ac0,则一定存在两个实数mn,使am
4、2+bm+c0an2+bn+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+cABCD10从3、1、2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知函数y=-1,给出一下结论:y的值随x的增大而减小此函数的图形与x轴的交点为(1,0)当x0时,y的值随x的增大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)12数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从
5、这一推论出发,利用“出入相补”原理复原了海岛算经九题古证(以上材料来源于古证复原的原则吴文俊与中国数学和古代世界数学泰斗刘徽)请根据上图完成这个推论的证明过程证明:S矩形NFGDSADC(SANFSFGC),S矩形EBMFSABC(_)易知,SADCSABC,_,_可得S矩形NFGDS矩形EBMF.13如图,在ABCD中,AD=2,AB=4,A=30,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 (结果保留)14若不等式组有解,则m的取值范围是_15如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线
6、y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_ 16如图,是用火柴棒拼成的图形,则第n个图形需_根火柴棒17在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为_三、解答题(共7小题,满分69分)18(10分)如图,已知AB是O的直径,CD与O相切于C,BECO(1)求证:BC是ABE的平分线;(2)若DC=8,O的半径OA=6,求CE的长19(5分)在RtABC中,BAC=,
7、D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F求证:AEFDEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积20(8分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数y的图象上(1)求反比例函数y的表达式;(2)在x轴上是否存在一点P,使得SAOPSAOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由21(10分)如图,直角坐标系中,M经过原点O(0,0),点A(,0)与点B(0,1),点D在劣弧OA上,连接BD交x轴于点C,且CODCBO(1)请直接写出M的直径,并求证BD平分ABO;(2)在线段BD
8、的延长线上寻找一点E,使得直线AE恰好与M相切,求此时点E的坐标22(10分)如图,已知AOB=45,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长23(12分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)
9、24(14分)如图,菱形中,分别是边的中点求证:.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形故错误;B不是轴对称图形,也不是中心对称图形故错误;C是轴对称图形,也是中心对称图形故正确;D不是轴对称图形,是中心对称图形故错误故选C【点睛】掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180后与原图重合2、D【解析】根据圆周角定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90在直角三角形A
10、CD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边3、C【解析】试题解析:四边形ABCD是平行四边形, 故选C.4、A【解析】过C作CEAB,RtACE中,CAD=60,AC=15m,ACE=30,AE=AC=15=7.5m,CE=ACcos30=15=,BAC=30,ACE=30,BCE=60,BE=CEtan60=22.5m,AB=BEAE=22.57.5=15m,故选A【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案5、B【解析】试题解析:第(1)个图形中
11、面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,按此规律,第n个图形中面积为1的正方形有2+3+4+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个故选B考点:规律型:图形变化类.6、D【解析】试题分析:由分式有意义的条件得出x+10,解得x1故选D点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键7、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形A
12、BCD是平行四边形,AO=CO,BO=DO,DC=AB=6,AC+BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解8、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 拉萨市 中考 数学试卷 解析
限制150内