2022-2023学年广西省贵港市重点中学高三二诊模拟考试数学试卷含解析.doc
《2022-2023学年广西省贵港市重点中学高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西省贵港市重点中学高三二诊模拟考试数学试卷含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD2在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于( )ABCD3已知四棱
2、锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD14已知,则( )ABCD5一个几何体的三视图如图所示,则这个几何体的体积为( ) ABCD6设,则,三数的大小关系是ABCD7已知命题,且是的必要不充分条件,则实数的取值范围为( )ABCD8函数在内有且只有一个零点,则a的值为( )A3B3C2D29已知集合,若,则实数的值可以为( )ABCD10如图,在圆锥SO中,AB,CD为底面圆的两条直径,ABCDO,且ABCD,SOOB3,SE.,异面直线SC与OE所成角的正切值为( )ABCD11已知集合(),若集合,且对任意的,存
3、在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD12如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,则_,_.14为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害. (1)_;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过_分钟人方可进入房间.15已
4、知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.16在平面五边形中,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).18(12分)已知多面体中,、均垂直于平面,是的中点(1)求证:平面;(2)求直线与平面所成角的
5、正弦值19(12分)设,.(1)若的最小值为4,求的值;(2)若,证明:或.20(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:(1)证明:平面平面ABC;(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.21(12分)设为等差数列的前项和,且,(1)求数列的通项公式;(2)若满足不等式的正整数恰有个,求正实数的取值范围22(10分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.()若,求曲线的方程;
6、()如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;()对于()中的曲线,若直线过点交曲线于点,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.2、A【解析】设直线直线与轴
7、正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.3、B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所
8、以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.4、B【解析】利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.5、B【解析】还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个
9、部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.6、C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.7、D【解析】求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命
10、题,即: ,是的必要不充分条件,解得实数的取值范围为故选:【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解(2)求解参数的取值范围时, 一定要注意区间端点值的检验8、A【解析】求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,在单调递增,且,在不存在零点;若,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.9、D【解析】由题意可得,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广西 贵港市 重点中学 高三二诊 模拟考试 数学试卷 解析
限制150内