2022-2023学年林芝市重点中学高三最后一模数学试题含解析.doc
《2022-2023学年林芝市重点中学高三最后一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年林芝市重点中学高三最后一模数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,集合,则等于( )ABCD2已知与分别为函数与函数的图象上一点,则线段的最小值为( )ABCD63使得的展开式中含有常数项的最小的n为( )ABCD4复数(i是虚数单位)在复平面内
2、对应的点在( )A第一象限B第二象限C第三象限D第四象限5记为数列的前项和数列对任意的满足.若,则当取最小值时,等于( )A6B7C8D96已知集合A=x|x1,B=x|,则ABCD7若复数()是纯虚数,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限8某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ).A与2016年相比,2019年不上线的人数有所增加B与2016年相比,2019年一本达线人数减少C与2016年相比,2019年二本达
3、线人数增加了0.3倍D2016年与2019年艺体达线人数相同9下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )ABCD10设直线过点,且与圆:相切于点,那么( )AB3CD111设i为虚数单位,若复数,则复数z等于( )ABCD012已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列是各项均为正数的等比数列,若,则的最小值为_.14(5分)已知椭圆方程为,过其下焦点作斜率存在的直线与椭圆交于两点,为
4、坐标原点,则面积的取值范围是_15甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为_.16已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则_,双曲线的离心率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的
5、一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,18(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生新生接待其实也是和社会沟通的一个平台校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,
6、统计数据如下:愿意不愿意男生6020女士4040(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求附:,其中0.050.010.0013.8416.63510.82819(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.()若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;()若直线的斜率存在且不为0,四边形为平行四边形,求证:;()在()的条件下,判断四边形
7、能否为矩形,说明理由.20(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.21(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值22(10分)椭圆:的左、右焦点分别是,离心率为,左、右顶点分别为,.过且垂
8、直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、三点共线.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.2、C【解析】利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线
9、与直线平行,则,设抛物线的切点为,则由可得,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.3、B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用4、B【解析】利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.5、A【解析】先令,找出的关系,再令,得到的关系,从而可
10、求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.6、A【解析】集合集合,故选A7、B【解析】化简复数,由它是纯虚数,求得,从而确定对应的点的坐标【详解】是纯虚数,则,对应点为,在第二象限故选:B【点睛】本题考查复数的除法运算,考查复数的概念与几何意义本题属于基础题8、A【解析】设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 林芝 重点中学 最后 数学试题 解析
限制150内