《2022-2023学年广东省广州大附中中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省广州大附中中考数学模拟精编试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1数据3、6、7、1、7、2、9的中位数和众数分别是()A1和7B1和9C6和7D6和92如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:ACB;乙的路线为:ADEFB,其中E为AB的中点;丙的路线为:AIJKB,其中
2、J在AB上,且AJJB若符号表示直线前进,则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A甲=乙=丙B甲乙丙C乙丙甲D丙乙甲3直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定4-5的相反数是( )A5BCD5如图,已知直线 PQMN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使ABC是等腰三角形,则这样的 C 点有( )A3 个 B4 个 C7 个 D8 个6下列计算错误的是()
3、Aaa=a2B2a+a=3aC(a3)2=a5Da3a1=a47如图,A,B是半径为1的O上两点,且OAOB点P从A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是ABC或D或8关于2、6、1、10、6的这组数据,下列说法正确的是( )A这组数据的众数是6B这组数据的中位数是1C这组数据的平均数是6D这组数据的方差是1092018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力数字7600用科学记数法表示为()A0.76104B7.6
4、103C7.6104D7610210已知二次函数yax1+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D511小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是BOA的角平分线”他这样做的依据是()A角的内部到角的两边的距离相等的点在角的平分线上B角平分线上的点到这个角两边的距离相等C
5、三角形三条角平分线的交点到三条边的距离相等D以上均不正确12A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h若设原来的平均车速为xkm/h,则根据题意可列方程为ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知三个数据3,x+3,3x的方差为,则x=_14若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120的扇形,则该圆锥的侧面面积为_cm(结果保留)15RtABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在RtABC的边上,当矩形DEFG的面积最大时,其对角线的长为_16若
6、代数式在实数范围内有意义,则x的取值范围是_17我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.18如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E则四边形AECF的面积是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分
7、)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明AEFAGF;从而发现并证明了EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F在边BC上,且EAF=45,若BE=3,EF=5,求CF的长20(6分)抛物线y=ax2+bx+3(a0)经过点A(1,0),B(,0),且与y轴
8、相交于点C(1)求这条抛物线的表达式;(2)求ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tanDCB=tanACO若存在,请求出点D的坐标,若不存在,说明理由21(6分)如图,在平面直角坐标系中,抛物线y=x22ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是1(1)求k,a,b的值;(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,当PBCD时,点Q是直线AB上一点,若BPQ+C
9、BO=180,求Q点坐标22(8分)已知:如图,点A,F,C,D在同一直线上,AF=DC,ABDE,AB=DE,连接BC,BF,CE求证:四边形BCEF是平行四边形23(8分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于m,则称m为这个函数的反向值在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离特别地,当函数只有一个反向值时,其反向距离n为零例如,图中的函数有4,1两个反向值,其反向距离n等于1(1)分别判断函数yx+1,y,yx2有没有反向值?如果有,直接写出其反向距离;(2)对于函数yx2b2x,若其反向距离为零,求b的值;若1b
10、3,求其反向距离n的取值范围;(3)若函数y请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围24(10分)解不等式组25(10分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF(1)说明BEF是等腰三角形;(2)求折痕EF的长26(12分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分
11、数/分80859095人数/人42104根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_分,众数是_分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,“1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y)用列表法或树状图法求这个点在第二象限的概率27(12分)如图,AB是O的直径,点C是AB延长线上的点,CD与O相切于点D,连结BD、AD求证;BDCA若C
12、45,O的半径为1,直接写出AC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数【详解】解:7出现了2次,出现的次数最多,众数是7;从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,中位数是6故选C【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义
13、2、A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似而且图2三角形全等,图3三角形相似详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE AE=BE=AB,AD=EF=AC,DE=BE=BC,甲=乙 图3与图1中,三个三角形相似,所以 = AJ+BJ=AB,AI+JK=AC,IJ+BK=BC, 甲=丙甲=乙=丙 故选A 点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系3、A【解析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AO
14、D,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答4、A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.5、D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析解:使ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个所以共8个故选D点评:本题考查了等腰三
15、角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏6、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂7、D【解析】分两种情形讨论当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是,由此即可解决问题【详解】解:当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是故选D8、A【解析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,1
16、0,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差= (15)2+(25)2+(65)2+(65)2+(105)2=10.1故选A考点:方差;算术平均数;中位数;众数9、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:76007.6103,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值
17、10、D【解析】根据二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个交点,故正确;令,故正确;由图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.11、A【解析】过两把直尺的交点C作CFBO与点F,由题意得CEAO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分AOB【详解】如图所示:过两把直尺的交点C作CFBO与点F,由题意得CEAO,两把完全相同的长方形直尺,CE=CF,OP
18、平分AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理12、A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:=1故选A【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,
19、即可求出x的值【详解】解:这三个数的平均数是:(3+x+3+3-x)3=3,则方差是:(3-3)2+(x+3-3)2+(3-x-3)2=,解得:x=1;故答案为:1【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立14、12【解析】根据圆锥的侧面展开图是扇形可得,该圆锥的侧面面积为:12,故答案为12.15、或【解析】分两种情形画出图形分别求解即可解决问题【详解】情况1:如图1中,四边形DEFG是ABC的内接矩形,设DE=CF=x,则BF=3-x EFAC,
20、=EF=(3-x)S矩形DEFG=x(3-x)=(x-)2+3x=时,矩形的面积最大,最大值为3,此时对角线=情况2:如图2中,四边形DEFG是ABC的内接矩形,设DE=GF=x,作CHAB于H,交DG于T则CH=,CT=x,DGAB,CDGCAB,DG=5x,S矩形DEFG=x(5x)=(x)2+3,x=时,矩形的面积最大为3,此时对角线= 矩形面积的最大值为3,此时对角线的长为或故答案为或【点睛】本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题16、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可解:在实数范围内
21、有意义,x-12,解得x1故答案为x1本题考查的是二次根式有意义的条件,即被开方数大于等于217、1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺)故答案为1考点:平面展开最短路径问题18、1【解析】四边形ABCD为正方形,D=ABC=90,AD=AB,ABE=D=90,EAF=90,DAF+BAF=90,BAE+BAF=90,DAF=BAE,AEBAFD,SAEB=SAFD,它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1三、解答题:(本大题共9个小题
22、,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=
23、90,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGEAF=9015=15,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,FG2=FC2+CG2=BE2+FC2;又EAF=15,而EAG=90,GAF=9015,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE
24、2=5232=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫20、(1)y=2x2+x+3;(2)ACB=45;(3)D点坐标为(1,2)或(4,25)【解析】(1)设交点式y=a(x+1)(x),展开得到a=3,然后求出a即可得到抛物线解析式;(2)作AEBC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出ACE即可;(3)作BHCD于H,如图2,设H(m,n),证明Rt
25、BCHRtACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m)2+n2=()2,m2+(n3)2=()2,接着通过解方程组得到H(,)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可【详解】(1)设抛物线解析式为y=a(x+1)(x),即y=ax2axa,a=3,解得:a=2,抛物线解析式为y=2x2+x+3;(2)作AEBC于E,如图1,当x=0时,y=2x2+x+3=3,则C(0,3),而A(1,0),B(,0),AC=,BC=AEBC=OCAB,AE=在RtACE中,sinACE=,ACE=45,即ACB=45;(3)作BHCD于H,如图2,设H(
26、m,n)tanDCB=tanACO,HCB=ACO,RtBCHRtACO,=,即=,BH=,CH=,(m)2+n2=()2=,m2+(n3)2=()2=,得m=2n+,把代入得:(2n+)2+n2=,整理得:80n248n9=0,解得:n1=,n2=当n=时,m=2n+=,此时H(,),易得直线CD的解析式为y=7x+3,解方程组得:或,此时D点坐标为(4,25);当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=x+3,解方程组得:或,此时D点坐标为(1,2)综上所述:D点坐标为(1,2)或(4,25)【点睛】本题是二次函数综合题熟练掌握二次函数图象上点的坐标特征、二次函数的性质
27、和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题21、(1)k=1、a=2、b=4;(2)s=t2 t6,自变量t的取值范围是4t1;(3)Q(,)【解析】(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b(2)过P点作PNOA于N,交AB于M,过B点作BHPN,设出P点坐标,可求出N点坐标,即可以用t表示S(3)由PBCD,可求P点坐标,连接OP,交AC于点R,过P点作PNOA于M,交AB于N,过D点作D
28、TOA于T,根据P的坐标,可得POA=45,由OA=OC可得CAO=45则POAB,根据抛物线的对称性可知R在对称轴上设Q点坐标,根据BORPQS,可求Q点坐标【详解】(1)OA=4A(4,0)16+8a=0a=2,y=x24x,当x=1时,y=1+4=3,B(1,3),将A(4,0)B(1,3)代入函数解析式,得,解得,直线AB的解析式为y=x+4,k=1、a=2、b=4;(2)过P点作PNOA于N,交AB于M,过B点作BHPN,如图1,由(1)知直线AB是y=x+4,抛物线是y=x24x,当x=t时,yP=t24t,yN=t+4PN=t24t(t+4)=t25t4,BH=1t,AM=t(4
29、)=t+4,SPAB=PN(AM+BH)=(t25t4)(1t+t+4)=(t25t4)3,化简,得s=t2 t6,自变量t的取值范围是4t1;4t1(3)y=x24x,当x=2时,y=4即D(2,4),当x=0时,y=x+4=4,即C(0,4),CDOAB(1,3)当y=3时,x=3,P(3,3),连接OP,交AC于点R,过P点作PNOA于M,交AB于N,过D点作DTOA于T,如图2,可证R在DT上PN=ON=3PON=OPN=45BPR=PON=45,OA=OC,AOC=90PBR=BAO=45,POACBPQ+CBO=180,BPQ=BCO+BOC过点Q作QSPN,垂足是S,SPQ=BO
30、RtanSPQ=tanBOR,可求BR=,OR=2,设Q点的横坐标是m,当x=m时y=m+4,SQ=m+3,PS=m1,解得m=当x=时,y=,Q(,)【点睛】本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.22、证明见解析【解析】首先证明ABCDEF(ASA),进而得出BC=EF,BCEF,进而得出答案【详解】ABDE,A=D,AF=CD,AC=DF,在ABC和DEF中,ABCDEF,BC=EF,ACB=DFE,BCEF,四边形BCEF是平行四边形【点睛】本题考查了全等三角
31、形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.23、(1)y有反向值,反向距离为2;yx2有反向值,反向距离是1;(2)b1;0n8;(3)当m2或m2时,n2,当2m2时,n2【解析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)根据题意可以求得相应的b的值;根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题【详解】(1)由题意可得,当mm+1时,该方程无解,故函数yx+1没有反向值,当m时,m1,n1(1)2,故y有反向值,反向距离为2,当
32、mm2,得m0或m1,n0(1)1,故yx2有反向值,反向距离是1;(2)令mm2b2m,解得,m0或mb21,反向距离为零,|b210|0,解得,b1;令mm2b2m,解得,m0或mb21,n|b210|b21|,1b3,0n8;(3)y,当xm时,mm23m,得m0或m2,n202,m2或m2;当xm时,mm23m,解得,m0或m2,n0(2)2,2m2,由上可得,当m2或m2时,n2,当2m2时,n2【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题24、1x1【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分
33、即可【详解】解不等式2x+11,得:x1,解不等式x+14(x2),得:x1,则不等式组的解集为1x1【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键25、(1)见解析;(2).【解析】(1)根据折叠得出DEF=BEF,根据矩形的性质得出ADBC,求出DEF=BFE,求出BEF=BFE即可;(2)过E作EMBC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在RtEMF中,由勾股定理求出即可【详解】(1)现将纸片折叠,使点D与点B重合,折痕为EF,DEF=BEF四边形ABCD是矩形,ADBC,DEF=
34、BFE,BEF=BFE,BE=BF,即BEF是等腰三角形;(2)过E作EMBC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM现将纸片折叠,使点D与点B重合,折痕为EF,DE=BE,DO=BO,BDEF四边形ABCD是矩形,BC=8,AD=BC=8,BAD=90在RtABE中,AE2+AB2=BE2,即(8BE)2+62=BE2,解得:BE=DE=BF,AE=8DE=8=BM,FM=在RtEMF中,由勾股定理得:EF=故答案为【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键26、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖
35、”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限)【解析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得【详解】(1)获奖的学生人数为2010%=200人,赵爽奖的人数为20024%=48人,杨辉奖的人数为20046%=92人,则刘徽奖的人数为200(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分故答案为90、90;(3)列表法:第二象限的点有(2,2)和(1,2),P(点在第二象限)【点睛】本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率27、(1)详见解析;(2)1+【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结如图,与相切于点D,是的直径,即(2)解:在中, .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
限制150内