2022-2023学年浙江省杭州市上城区杭州中学中考数学押题卷含解析.doc
《2022-2023学年浙江省杭州市上城区杭州中学中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省杭州市上城区杭州中学中考数学押题卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABCD,FEDB,垂足为E,1=60,则2的度数是()A60B50C40D302一次函数的图象不经过( )A第一
2、象限B第二象限C第三象限D第四象限3如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AEBD,EFBC,tanABC=,EF=,则AB的长为()ABC1D4如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOBC=1,tanBOC=,则k2的值是()A3BC3D65关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-6如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30 B45 C50 D607
3、如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A2cmB4cmC6cmD8cm8如图图形中,既是轴对称图形,又是中心对称图形的是()ABCD9点M(1,2)关于y轴对称点的坐标为()A(1,2)B(1,2)C(1,2)D(2,1)10如图,ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则EBF的周长是()cmA7B11C13D1611在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A最高分90B众数是5
4、C中位数是90D平均分为87.512设x1,x2是一元二次方程x22x3=0的两根,则x12+x22=( )A6 B8 C10 D12二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)14数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计)若要求折出的盒子体积最大,则正方体的棱长等于_15抛物线 的顶点坐标是_16如图,AB为O的直径,BC为O的弦,点D是劣弧AC上一点,若点E在直径AB
5、另一侧的半圆上,且AED=27,则BCD的度数为_17一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_18如图,在每个小正方形边长为的网格中,的顶点,均在格点上,为边上的一点.线段的值为_;在如图所示的网格中,是的角平分线,在上求一点,使的值最小,请用无刻度的直尺,画出和点,并简要说明和点的位置是如何找到的(不要求证明)_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心
6、(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径20(6分)已知:二次函数满足下列条件:抛物线y=ax2+bx与直线y=x只有一个交点;对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立(1)求二次函数y=ax2+bx的解析式;(2)若当-2xr(r0)时,恰有ty1.5r成立,求t和r的值21(6分)如图,在等边中,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小
7、聪的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012345_00说明:补全表格上相关数值保留一位小数建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_cm22(8分)实践:如图ABC是直角三角形,ACB90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB与O的位置关系是_ .(直接写出答案)若AC=5,BC=12,求O 的半径.23(8
8、分)在平面直角坐标系中,抛物线y(xh)2+k的对称轴是直线x1若抛物线与x轴交于原点,求k的值;当1x0时,抛物线与x轴有且只有一个公共点,求k的取值范围24(10分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围25(10分)如图,抛物线y=ax2+bx(a0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上设A(t,0)
9、,当t=2时,AD=1求抛物线的函数表达式当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离26(12分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 的面积为 27(12分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量y(件)与时
10、间x(时)之间的函数图象如下图所示(1)求甲组加工零件的数量y与时间x之间的函数关系式(2)求乙组加工零件总量a的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】由EFBD,1=60,结合三角形内角和为180即可求出D的度数,再由“两直线平行,同位角相等”即可得出结论【详解】解:在DEF中,1=60,DEF=90,D=180-DEF-1=30ABCD,2=D=30故选D【点睛】本题考查平行线的性质以及三角形内角和为180,解题关键是根据平行线的性质,找出相等、互余或互补的角2、B【解析】由二次函数,可得函数图像经过
11、一、三、四象限,所以不经过第二象限【详解】解:,函数图象一定经过一、三象限;又,函数与y轴交于y轴负半轴,函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响3、B【解析】由平行四边形性质得出AB=CD,ABCD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出ECF=ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长【详解】四边形ABCD是平行四边形,ABDC,AB=CD,AEBD,四边形ABDE是平行四边形,AB=DE,AB=DE=CD,即D为CE中点,EFBC,EFC=90,ABCD,EC
12、F=ABC,tanECF=tanABC=,在RtCFE中,EF=,tanECF=,CF=,根据勾股定理得,CE=,AB=CE=,故选B【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键4、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CHy轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3),把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造
13、直角三角形解决问题,属于中考常考题型5、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小6、D【解析】根据圆周角定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90在直角三角形ACD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边7、B【解析】首先连接OC,A
14、O,由切线的性质,可得OCAB,根据已知条件可得:OA=2OC,进而求出AOC的度数,则圆心角AOB可求,根据弧长公式即可求出劣弧AB的长【详解】解:如图,连接OC,AO,大圆的一条弦AB与小圆相切,OCAB,OA=6,OC=3,OA=2OC,A=30,AOC=60,AOB=120,劣弧AB的长= =4,故选B【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键8、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴
15、对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.9、A【解析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.10、C【解析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案【详解】将线段DC沿着CB的方向平移7cm得到线段EF,EF=DC=4cm,FC=7cm,AB=AC,BC=12cm,B=C,BF=5cm,B=BFE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 浙江省 杭州市 城区 杭州 中学 中考 数学 押题 解析
限制150内