《2022-2023学年广东省信宜市第二中学高考压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省信宜市第二中学高考压轴卷数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则( )ABCD2将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为( )ABCD3设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD4双曲线的右焦点为
2、,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为( )ABCD5已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD6已知椭圆(ab0)与双曲线(a0,b0)的焦点相同,则双曲线渐近线方程为()ABCD7已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国
3、数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是ABCD9已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD10已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为(
4、)ABCD11函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 12在三棱锥中,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为_.14已知函数为上的奇函数,满足.则不等式的解集为_.15在直角三角形中,为直角,点在线段上,且,若,则的正切值为_.16为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛每两班之间只比赛1场,目前()班已赛了4场,
5、(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场则目前(五)班已经参加比赛的场次为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.18(12分)已知函数.(1)当时,求函数在处的切线方程;(2)若函数没有零点,求实数的取值范围.19(12分)已知函数(1)解不等式;(2)若均为正实数,且满足,为的最小值,求证:.20(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,三棱锥的体积为,求菱形的边长
6、.21(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求和的普通方程;(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.22(10分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.2、C【解析】根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:
7、由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.3、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接
8、法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.4、D【解析】根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率【详解】由题意可知,代入得:,代入双曲线方程整理得:,又因为,即可得到,故选:D【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,的方程或不等式,由此计算双曲线的离心
9、率或范围,属于中档题5、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和6、A【解析】由题意可得,即,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆与双曲线即的焦点相同,可得:,即,可得,双曲线的渐近线方程为:,故选:A【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题7、D【解析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b
10、,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题8、B【解析】初始:,第一次循环:,继续循环;第二次循环:,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B9、D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.10、B【解析】根据三角函数的两角和差
11、公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数 则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即 故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.11、D【解析】由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结
12、果12、A【解析】设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆
13、柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.14、【解析】构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【详解】设,则,设,则.当时,此时函数单调递减;当时,此时函数单调递增.所以,函数在处取得极小值,也是最小值,即,即,所以,函数在上为增函数,函数为上的奇函数,则,则不等式等价于,又,解得.因此,不等式的解集为.故答案为:.【点睛】本题主要考查不等式的求解,构造函数,求
14、函数的导数,利用导数和函数单调性之间的关系是解决本题的关键综合性较强15、3【解析】在直角三角形中设,利用两角差的正切公式求解.【详解】设,则,故.故答案为:3【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.16、2【解析】根据比赛场次,分析,画出图象,计算结果.【详解】画图所示,可知目前(五)班已经赛了2场故答案为:2【点睛】本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】(1)由恒成立,可得恒成立,进
15、而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【详解】(1)由题意,可知,由恒成立,可得恒成立.令,则.令,则,在上单调递增,又,时,;时,即时,;时,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,故存在唯一的极值点,则,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,当时,恒成立,在上单调递增.,存在满足时,使得.又单调递增,所以为唯一解
16、.当时,二次函数,满足,则恒成立,在上单调递增.,存在使得,又在上单调递增,为唯一解.当时,二次函数,满足,此时有两个不同的解,不妨设, 列表如下:00极大值极小值由表可知,当时,的极大值为.,.下面来证明,构造函数,则,当时,此时单调递增,时,故成立.,存在,使得.又在单调递增,为唯一解.所以,对任意,方程有唯一解,即过原点任意的直线与曲线有且仅有一个公共点.【点睛】本题考查利用导数研究函数单调性的应用,考查不等式恒成立问题,考查利用单调性研究图象交点问题,考查学生的计算求解能力与推理论证能力,属于难题.18、(1).(2)【解析】(1)利用导数的几何意义求解即可;(2)利用导数得出的单调性
17、以及极值,从而得出的图象,将函数的零点问题转化为函数图象的交点问题,由图,即可得出实数的取值范围.【详解】(1)当时,切线斜率,又切点切线方程为,即.(2),记,令得;的情况如下表:2+0单调递增极大值单调递减当时,取极大值又时,;时,若没有零点,即的图像与直线无公共点,由图像知的取值范围是.【点睛】本题主要考查了导数的几何意义的应用,利用导数研究函数的零点问题,属于中档题.19、(1)或(2)证明见解析【解析】(1)将写成分段函数的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,证得不等式成立.【详解】(1)当时,恒成立,解得;当时,由,解得;当时,由解得所以的解集
18、为或(2)由(1)可求得最小值为,即因为均为正实数,且(当且仅当时,取“”)所以,即.【点睛】本小题主要考查绝对值不等式的求法,考查利用基本不等式证明不等式,属于中档题.20、(1)证明见解析;(2)1【解析】(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值【详解】(1)四边形为菱形,平面,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,菱形的边长为1【点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化
19、简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平21、(1)曲线的普通方程为:;曲线的普通方程为:(2)【解析】(1)消去曲线参数方程中的参数,求得和的普通方程.(2)设出过原点的直线的极坐标方程,代入曲线的极坐标方程,求得的表达式,结合三角函数值域的求法,求得的最小值.【详解】(1)曲线的普通方程为:;曲线的普通方程为:.(2)设过原点的直线的极坐标方程为;由得,所以曲线的极坐标方程为在曲线中,.由得曲线的极坐标方程为,所以而到直线与曲线的交点的距离为,因此,即的最小值为.【点睛】本小题主要考查参数方程化为普通方程,考查直角坐标方程化为极坐标方程,考查极坐标系下距离的有关计算,属于中档题.22、(1)见解析(2)【解析】(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,时,的最小值,即可得出实数的取值范围.【详解】(1),.当即时,此时,在上单调递增;当即时,时,在上单调递减;时,在上单调递增;当即时,此时,在上单调递减;(2)当时,因为在上单调递增,所以的最小值为,所以当时,在上单调递减,在上单调递增所以的最小值为.因为,所以,.所以,所以.当时,在上单调递减所以的最小值为因为,所以,所以,综上,.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究函数的存在性问题,属于中档题.
限制150内