2022-2023学年山东省菏泽一中、单县一中高三下学期一模考试数学试题含解析.doc
《2022-2023学年山东省菏泽一中、单县一中高三下学期一模考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省菏泽一中、单县一中高三下学期一模考试数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知二次函数的部分图象如图所示,则函数的零点所在区间为( )ABCD2某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”现已知当时,该命题不成立,那么( )A当时,该命题不成立B当时,该命题成立C当时,该命题不成立D当时,该命
2、题成立3已知函数有三个不同的零点 (其中),则 的值为( )ABCD4 “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是20152019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )A这五年,出口总额之和比进口总额之和大B这五年,2015年出口额最少C这五年,2019年进口增速最快D这五年,出口增速前四年逐年下降5向量,且,则( )ABCD6已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面
3、积为,则直线与平面所成角的正切值为()ABCD7函数的定义域为( )ABCD8已知函数,且,则( )A3B3或7C5D5或89已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )ABCD10设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D11设为虚数单位,复数,则实数的值是( )A1B-1C0D212已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( )AB2CD3二、填空题:本题共4小题,每小题5分,共20分。13在中
4、,为定长,若的面积的最大值为,则边的长为_14已知圆柱的两个底面的圆周在同一个球的球面上,圆柱的高和球半径均为2,则该圆柱的底面半径为_.15点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为_.16经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数f(x)axlnx(aR).(1)若a2时,求函数f(x)的单调区间;(2)设g(x)f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.18(12分)在平面直角坐标系中,曲线
5、,曲线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积19(12分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且.(I)求证:为直角三角形;(II)试确定的值,使得二面角的平面角余弦值为.20(12分)已知函数(1)讨论的单调性;(2)当时,求的取值范围.21(12分)已知点到抛物线C:y1=1px准线的距离为1()求C的方程及焦点F的坐标;()设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,P
6、B,分别交x轴于M,N两点,求的值22(10分)在直角坐标系中,曲线的参数方程为(为参数,为实数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为 (1)求线段长的最小值; (2)求点的轨迹方程参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由函数f(x)的图象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上单调递增,又g(0)1b0,g(1)e2b0,根据函数的零点存在性定理可知
7、,函数g(x)的零点所在的区间是(0,1),故选B.2、C【解析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.3、A【解析】令,构造,要使函数有三个不同的零点(其中),则方程需要有两个不同的根,则,解得或,结合的图象,并分,
8、两个情况分类讨论,可求出的值.【详解】令,构造,求导得,当时,;当时,故在上单调递增,在上单调递减,且时,时,可画出函数的图象(见下图),要使函数有三个不同的零点(其中),则方程需要有两个不同的根(其中),则,解得或,且,若,即,则,则,且,故,若,即,由于,故,故不符合题意,舍去. 故选A. 【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.4、D【解析】根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可
9、得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.5、D【解析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.6、C【解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【详解】设分别是的中点平面 是等边三角形 又平面 为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【点睛】本题考查了棱锥
10、与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题7、C【解析】函数的定义域应满足 故选C.8、B【解析】根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题9、C【解析】由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 山东省 菏泽 一中 单县 下学 期一模 考试 数学试题 解析
限制150内