2022-2023学年广东省普宁市新世界中英文学校高三二诊模拟考试数学试卷含解析.doc
《2022-2023学年广东省普宁市新世界中英文学校高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省普宁市新世界中英文学校高三二诊模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( )ABCD2设(是虚数单位),则( )AB1C2D3已知,则( )ABCD4已知集合Ay|y,Bx|ylg(x2x2),则
2、R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)5已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D56已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为( )ABCD7如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,则异面直线与所成角的余弦值为( )ABCD8已知边长为4的菱形,为的中点,为平面内一点,若,则( )A16B14C12D89数列满足,且,则( )AB9CD710若函数函数只有1个零点,则的取值范围是( )ABCD11已知复数(为虚数单位,),则在复平面内对应的点所在的象
3、限为( )A第一象限B第二象限C第三象限D第四象限12已知复数z满足(i为虚数单位),则z的虚部为( )ABC1D二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_14若,则=_,=_.15已知函数若关于的不等式的解集为,则实数的所有可能值之和为_.16(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()当时,讨论函数的单调区间;()若对任意的和恒成立,求实数的取值范围18(12分)已知函数()求在点处的切线方程;()
4、求证:在上存在唯一的极大值;()直接写出函数在上的零点个数19(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.20(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.21(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)22(10分)己知圆F1:(x+1)1 +y1= r1(1r3),圆F1:(x-1)1+y1= (4-r)1(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m0),过点E斜率为k(k0)的直线与()中轨迹E相交于M,N两点,记直线QM的斜
5、率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有, , 得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.2、A【解析】先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【详解】,故选:A【
6、点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题3、B【解析】利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.4、D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20x|0x(0,),AB(0,),R(AB)(,0,+).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.5、D【解析】
7、试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.6、C【解析】根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代
8、入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.7、B【解析】建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.8、B【解析】取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,即.,则.故
9、选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.9、A【解析】先由题意可得数列为等差数列,再根据,可求出公差,即可求出【详解】数列满足,则数列为等差数列,故选:【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题10、C【解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得所以切线斜率为,所以或故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东省 普宁市 新世界 中英文 学校 高三二诊 模拟考试 数学试卷 解析
限制150内