2022-2023学年广州市黄埔区重点中学中考数学最后冲刺模拟试卷含解析.doc
《2022-2023学年广州市黄埔区重点中学中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广州市黄埔区重点中学中考数学最后冲刺模拟试卷含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知关于x的方程x24x+c+1=0有两个相等的实数根,则常数c的值为( )A1B0C1D32已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A5cmB5cm或3cmC7cm或3c
2、mD7cm3已知A(x1,y1),B(x2,y2)是反比例函数y(k0)图象上的两个点,当x1x20时,y1y2,那么一次函数ykxk的图象不经过()A第一象限 B第二象限 C第三象限 D第四象限4如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()AADBCBDAC=ECBCDEDAD+BC=AE5汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t5t2,汽车刹车后停下来前进的距离是()A10m B20m C30m D40m6用加减法解方程组时,如果消去y,最简捷的方法是()A43B4+3C
3、2D2+7如图,点E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错误的是()AAF=CFBDCF=DFCC图中与AEF相似的三角形共有5个DtanCAD=8下列手机手势解锁图案中,是轴对称图形的是( )ABCD9如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )ABCD10将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李12计算:+(|3|)0=_13七巧板是我们祖先的
4、一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知SBIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_14若代数式的值为零,则x=_15如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_.16如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1mx+n的解集为_.三、解答题(共8题,共72分)17(8分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,DPC=A=B=90求证:ADBC=APBP(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当D
5、PC=A=B=时,上述结论是否依然成立说明理由(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在ABD中,AB=6,AD=BD=1点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足DPC=A设点P的运动时间为t(秒),当DC的长与ABD底边上的高相等时,求t的值18(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组求解一元二次方程,把它转化为两个一元一次方程来解求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生
6、增根,所以解分式方程必须检验各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知用“转化”的数学思想,我们还可以解一些新的方程例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到
7、点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C求AP的长19(8分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由20(8分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于
8、点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;
9、联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)21(8分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点求抛物线的表达式;若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标22(10分)(1)(2)2+2sin 45(2)解不等式组,并将其解集在如图所示的数轴上表示出来23(12分) (1)解方程: +4(2)解不等式组并把解集表示在数轴上:.24如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别
10、过点B,C,F30.(1)求证:BECE(2)将EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)求证:BEMCEN;若AB2,求BMN面积的最大值;当旋转停止时,点B恰好在FG上(如图3),求sinEBG的值.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:由于方程x24x+c+1=0有两个相等的实数根,所以 =b24ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判
11、别式 =b24ac:当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.2、B【解析】(1)如图1,当点C在点A和点B之间时,点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,MB=AB=4cm,BN=BC=1cm, MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,MB=AB=4cm,BN=BC=1cm,MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题
12、目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.3、B【解析】试题分析:当x1x20时,y1y2,可判定k0,所以k0,即可判定一次函数y=kxk的图象经过第一、三、四象限,所以不经过第二象限,故答案选B考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系4、C【解析】利用旋转的性质得BA=BD,BC=BE,ABD=CBE=60,C=E,再通过判断ABD为等边三角形得到AD=AB,BAD=60,则根据平行线的性质可判断ADBC,从而得到DAC=C,于是可判断DAC=E,接着利用AD=AB,BE=BC可判断AD+BC
13、=AE,利用CBE=60,由于E的度数不确定,所以不能判定BCDE【详解】ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB的延长线上,BA=BD,BC=BE,ABD=CBE=60,C=E,ABD为等边三角形,AD=AB,BAD=60,BAD=EBC,ADBC,DAC=C,DAC=E,AE=AB+BE,而AD=AB,BE=BC,AD+BC=AE,CBE=60,只有当E=30时,BCDE故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等边三角形的性质5、B【解析】利用配方法求二次函数最值的方法解答即
14、可【详解】s=20t-5t2=-5(t-2)2+20,汽车刹车后到停下来前进了20m故选B【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键6、D【解析】试题解析:用加减法解方程组 时,如果消去y,最简捷的方法是2+,故选D.7、D【解析】由 又ADBC,所以 故A正确,不符合题意;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由BAEADC,得到CD与AD的大小关系,根据正切函数可求tanCAD的值,故D错误,
15、符合题意【详解】A.ADBC,AEFCBF, ,故A正确,不符合题意;B. 过D作DMBE交AC于N,DEBM,BEDM,四边形BMDE是平行四边形, BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DF=DC,DCF=DFC,故B正确,不符合题意;C. 图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由BAEADC,有 tanCAD 故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.8、D【解析】根据轴对称图形与中心对称图形的定义进
16、行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.9、A【解析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图10、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1,再根据两直线平行,同位角相等可得2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广州市 黄埔区 重点中学 中考 数学 最后 冲刺 模拟 试卷 解析
限制150内