2022-2023学年广东省阳江三中高考考前提分数学仿真卷含解析.doc
《2022-2023学年广东省阳江三中高考考前提分数学仿真卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省阳江三中高考考前提分数学仿真卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数的模为( )AB1C2D2已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-23设非零向量,满足,且与的夹角为,则“”是“”的( )A充分非必要条件B必要非充分条件C充分必要条件D既不充分也不必要条件4若直线与圆相交所得弦长为,则
2、( )A1B2CD35已知m,n是两条不同的直线,是两个不同的平面,给出四个命题:若,则;若,则;若,则;若,则其中正确的是( )ABCD6已知集合,集合,那么等于( )ABCD7已知函数满足当时,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是( )ABCD8中,为的中点,则( )ABCD29已知双曲线 (a0,b0)的右焦点为F,若过点F且倾斜角为60的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )AB(1,2),CD10设集合,则集合ABCD11定义在R上的偶函数f(x)满足f(x+2)f(x),当x3,2时,f(x)x2,则(
3、 )ABf(sin3)f(cos3)CDf(2020)f(2019)12设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且,则实数m的值是_14直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_15曲线在点处的切线方程为_.16已知复数z是纯虚数,则实数a_,|z|_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电
4、量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;()为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;()在满足()的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.18(12分)在四棱锥中,底面为直角梯形,分别为,的中点(1)求证:(2)若,求二面角的余弦值
5、19(12分)如图,已知,分别是正方形边,的中点,与交于点,都垂直于平面,且,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.20(12分)已知函数,其中.()若,求函数的单调区间;()设.若在上恒成立,求实数的最大值.21(12分)设椭圆:的左、右焦点分别为,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.22(10分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.参考答案一、选择题:本题共12小题,每小题5分
6、,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解【详解】解:,复数的模为故选:D【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题2、B【解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【详解】是定义在R上的奇函数,且;的周期为4;时,;由奇函数性质可得;时,;.
7、故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.3、C【解析】利用数量积的定义可得,即可判断出结论【详解】解:,解得,解得, “”是“”的充分必要条件故选:C【点睛】本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题4、A【解析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.5、D【解析】根据面面垂直的判定
8、定理可判断;根据空间面面平行的判定定理可判断;根据线面平行的判定定理可判断;根据面面垂直的判定定理可判断.【详解】对于,若,两平面相交,但不一定垂直,故错误;对于,若,则,故正确;对于,若,当,则与不平行,故错误;对于,若,则,故正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.6、A【解析】求出集合,然后进行并集的运算即可.【详解】,.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.7、C【解析】先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即
9、可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.8、D【解析】在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,在中,由余弦定理可得,.故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.9、A【解析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的
10、斜率的绝对值小于等于渐近线的斜率根据这个结论可以求出双曲线离心率的取值范围【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,离心率,故选:【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件10、B【解析】先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.【详解】对于集合A,解得或,故.对于集合B,解得.故.故选B.【点睛】本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东省 阳江 中高 考考 前提 分数 仿真 解析
限制150内