2022-2023学年河北省邢台隆尧县联考毕业升学考试模拟卷数学卷含解析.doc
《2022-2023学年河北省邢台隆尧县联考毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河北省邢台隆尧县联考毕业升学考试模拟卷数学卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC/BD/y轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为( )A4B3C2D2如图,已知在RtABC中,ABC=90,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线B
2、C上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;A=EBA;EB平分AED;ED=AB中,一定正确的是( )ABCD3已知点A、B、C是直径为6cm的O上的点,且AB=3cm,AC=3 cm,则BAC的度数为()A15B75或15C105或15D75或1054加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系pat2+bt+c(a,b,c是常数),如图记录了三次实验的数据根据上述函数模型和实验数据,可得到最佳加工时间为()A4.25分钟B4.00分钟C3.75分钟D3.50分钟5如图,AB是
3、O的弦,半径OCAB于点D,若O的半径为5,AB=8,则CD的长是( )A2 B3 C4 D56如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CDx轴,垂足为D,且OA=AD,则以下结论:;当0x3时,;如图,当x=3时,EF=;当x0时,随x的增大而增大,随x的增大而减小其中正确结论的个数是( )A1B2C3D47如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD18如图,在O中
4、,弦BC1,点A是圆上一点,且BAC30,则的长是( )ABCD9下列图形中既是中心对称图形又是轴对称图形的是ABCD10若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.二、填空题(本大题共6个小题,每小题3分,共18分)11如图,中,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么的面积的最小值为_12()2(3.14)0_13工人师傅常用角尺平分一个任意角做法如下:如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合过角尺顶点C的射线OC即是AOB的平分线做法中用到全等三角形判定的依据是_14因
5、式分解:_15如图,如果四边形ABCD中,ADBC6,点E、F、G分别是AB、BD、AC的中点,那么EGF面积的最大值为_16若反比例函数y的图象经过点A(m,3),则m的值是_三、解答题(共8题,共72分)17(8分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?18(8分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点
6、.已知: ,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值. 19(8分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形是平行四边形;(2)如果,求证四边形是矩形.20(8分)如图,在矩形ABCD中,AB3,AD4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90得线段PQ(1)当点Q落到AD上时,PAB_,PA_,长为_;(2
7、)当APBD时,记此时点P为P0,点Q为Q0,移动点P的位置,求QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果21(8分)杨辉算法中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?22(10分)如图,ABC三个定点坐标分别为A(1,3),B(1,1),C(3,2)请画出ABC关于y轴对称的A1B1C1;以原点O为位似中心,将A1B1C1放大为
8、原来的2倍,得到A2B2C2,请在第三象限内画出A2B2C2,并求出SA1B1C1:SA2B2C2的值23(12分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨千米)甲库乙库甲库乙库A库20151212B库2520108若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):从甲库运往B库粮食 吨;从乙库运往A库粮
9、食 吨;从乙库运往B库粮食 吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?24张老师在黑板上布置了一道题:计算:2(x+1)2(4x5),求当x和x时的值小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC/BD/ y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出SOAC,S
10、ABD的面积,再根据OAC与ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,A(1,1),把x=2代入得:y=,B(2, ),AC/BD/ y轴,C(1,K),D(2,)AC=k-1,BD=-,SOAC=(k-1)1,SABD= (-)1,又OAC与ABD的面积之和为,(k-1)1 (-)1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.2、B【解析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,D为BC的中点,P
11、D垂直平分BC,EDBC正确.ABC=90,PDAB.E为AC的中点,EC=EA,EB=EC.A=EBA正确;EB平分AED错误;ED=AB正确.正确的有.故选B考点:线段垂直平分线的性质.3、C【解析】解:如图1AD为直径,ABD=ACD=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABD中,AD=6,AC=3,CAD=45,则BAC=105;如图2,AD为直径,ABD=ABC=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABC中,AD=6,AC=3,CAD=45,则BAC=15故选C点睛:本题考查的是圆周角定理和锐角三角函数的知识
12、,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用4、C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=0.2,b=1.5,c=2,即p=0.2t2+1.5t2,当t=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.5、A【解析】试题分析:已知AB是O的弦,半径OCAB于点D,由垂径定理可得AD=BD=4,在RtADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂
13、径定理;勾股定理.6、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,A(1,0),B(0,2),即OA=1,OB=2,在OBA和CDA中,AOB=ADC=90,OAB=DAC,OA=AD,OBACDA(AAS),CD=OB=2,OA=AD=1,(同底等高三角形面积相等),选项正确;C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0x2时,选项错误;当x=3时,即EF=,选项正确;当x0时,随x的增大而增大,随x的增大而减小,选项正确,故选C考点:反比例函数与一次函数的交点问题7、B【解析】分析:由于点P在运动中保持APD=90,所以点P的路径是
14、一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90, 点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的知识得出点P的运动轨迹8、B【解析】连接OB,OC首先证明OBC是等边三角形,再利用弧长公式计算即可【详解】解:连接OB,OCBOC2BAC60,OBOC,OBC是等边三角形,OBOCBC1,的长,故选B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 河北省 邢台 隆尧县 联考 毕业 升学考试 模拟 数学 解析
限制150内