2022-2023学年重庆市北碚区西南大附属中学中考猜题数学试卷含解析.doc
《2022-2023学年重庆市北碚区西南大附属中学中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年重庆市北碚区西南大附属中学中考猜题数学试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列等式正确的是()Ax3x2=xBa3a3=aCD(7)4(7)2=722已知为单位向量,=,那么下列结论中错误的是( )ABC与方向相同D与方向相反3在中,则的值是( )ABCD4在实数,0,4中,最大的是()AB0CD45已知二次函数yax2+bx+c(a1)的图象如图所示,给出以下结
2、论:a+b+c1;ab+c1;b+2a1;abc1其中所有正确结论的序号是( )ABCD6图为一根圆柱形的空心钢管,它的主视图是( )ABCD7在3,1,0,1四个数中,比2小的数是()A3B1C0D18某市2010年元旦这天的最高气温是8,最低气温是2,则这天的最高气温比最低气温高()A10B10C6D69如图,ABC中,B70,则BAC30,将ABC绕点C顺时针旋转得EDC当点B的对应点D恰好落在AC上时,CAE的度数是()A30B40C50D6010某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()ABCD二、填空题(
3、共7小题,每小题3分,满分21分)11计算:22()=_12三人中有两人性别相同的概率是_.13计算:2(ab)3b_14如图,直线ab,BAC的顶点A在直线a上,且BAC100若134,则2_15二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3An在y轴的正半轴上,点B1,B2,B3Bn在二次函数位于第一象限的图象上,点C1,C2,C3Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3四边形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3=An1BnAn=60,菱形An1BnAnCn的周长为 16若反比
4、例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),则这个反比例函数的表达式为_17如图,在扇形AOB中,AOB=90,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_三、解答题(共7小题,满分69分)18(10分)如图,已知A(4,n),B(2,4)是一次函数ykx+b的图象和反比例函数y的图象的两个交点求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围19(5分)已知抛物线y=ax2+ c(a0)(1)若抛物线与x轴交于点B(4,
5、0),且过点P(1,3),求该抛物线的解析式;(2)若a0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);(3)若a0,c 0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限直线PA、PB与y轴分别交于M、N两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由20(8分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型
6、号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?21(10分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点求m的值及C点坐标;在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由为抛物线上一点,它关于直线BC的对称点为Q当四边形PBQC为菱形时,求点P的坐标;点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由22(10分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图这组成绩的众数是 ;求这组成绩的方差;若嘉淇再
7、射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数23(12分)如图,在四边形ABCD中,E是AB的中点,AD/EC,AED=B求证:AEDEBC;当AB=6时,求CD的长24(14分)在如图的正方形网格中,每一个小正方形的边长均为 1格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(2,0),(3,3)(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把ABC 绕坐标原点 O 顺时针旋转 90得到A1B1C1,画出A1B1C1,写出点B1的坐标;(3)以坐标原点 O 为位似中心,相似比
8、为 2,把A1B1C1 放大为原来的 2 倍,得到A2B2C2 画出A2B2C2,使它与AB1C1 在位似中心的同侧;请在 x 轴上求作一点 P,使PBB1 的周长最小,并写出点 P 的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3a3=1,故此选项错误;C、(-2)2(-2)3=-,正确;D、(-7)4(-7)2=72,故此选项错误;故选C【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解
9、题关键2、C【解析】由向量的方向直接判断即可.【详解】解:为单位向量,=,所以与方向相反,所以C错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.3、D【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90,BC=1,AB=4,故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比4、C【解析】根据实数的大小比较即可得到答案.【详解】解:161725,45,04,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需
10、比较被开方数的大小.5、C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解:当x=1时,y=a+b+c=1,故本选项错误;当x=1时,图象与x轴交点负半轴明显大于1,y=ab+c1,故本选项正确;由抛物线的开口向下知a1,对称轴为1x=1,2a+b1,故本选项正确;对称轴为x=1,a、b异号,即b1,abc1,故本选项错误;正确结论的序号为故选B点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a1;否则a1;(2)b由对称轴和a的符号确定:由
11、对称轴公式x=b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c1;否则c1;(4)当x=1时,可以确定y=a+b+C的值;当x=1时,可以确定y=ab+c的值6、B【解析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.7、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要
12、熟练掌握比较有理数大小的方法.8、A【解析】用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10即这天的最高气温比最低气温高10故选A9、C【解析】由三角形内角和定理可得ACB=80,由旋转的性质可得AC=CE,ACE=ACB=80,由等腰的性质可得CAE=AEC=50【详解】B70,BAC30ACB80将ABC绕点C顺时针旋转得EDCACCE,ACEACB80CAEAEC50故选C【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键10、B【解析】画树状图列出所有等可能结果,从中确定出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 重庆市 北碚区 西南 附属中学 中考 数学试卷 解析
限制150内