2022-2023学年浙江省金华市聚仁教学集团中考数学最后一模试卷含解析.doc
《2022-2023学年浙江省金华市聚仁教学集团中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省金华市聚仁教学集团中考数学最后一模试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果菱形的一边长是8,那么它的周长是()A16B32C16D322下列各数中负数是()A(2) B|2| C(2)2 D(2)33估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和44如图,A、B、C、D是O上的四点,BD为O
2、的直径,若四边形ABCO是平行四边形,则ADB的大小为()A30B45C60D755如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD6如图,O是ABC的外接圆,B=60,O的半径为4,则AC的长等于()A4B6C2D87若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx18如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:;GDE=45;DG=DE在以上4个结论中,正确的共有( )个A1个B2 个C3 个D4个9如图由四个相同的小立方体组成的立体图像,
3、它的主视图是( )ABCD10如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()ABCD11在ABC中,若=0,则C的度数是( )A45B60C75D10512若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm1二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x的方程kx2+2x1=0有实数根,则k的取值范围是_14计算的结果等于_.15如图,在反比例函数y=(x0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为2,4,6,8,分别
4、过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,Sn,则S1+S2+S3+Sn=_(用含n的代数式表示)16计算:_17抛物线(为非零实数)的顶点坐标为_.18已知b是a,c的比例中项,若a=4,c=16,则b=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点AF、CD在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,A=D,AF=DC(1)求证:四边形BCEF是平行四边形,(2)若ABC=90,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形20(6分)某商店销售A型和B型两种电脑
5、,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0a200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案21(6分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数
6、能被x0+2整除,按此规律轮换后, 能被x0+3整除,能被x0+n1整除,则称这个n位数是x0的一个“轮换数”例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数22(8分)如图所示,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,EC的延长线交BD于点P(1)把ABC绕点A旋转到图1,BD,CE的关系是 (选
7、填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 23(8分)如图,在四边形ABCD中,ADBC,B=90,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边EFG,设E点移动距离为x(0x6)(1)DCB= 度,当点G在四边形ABCD的边上时,x= ;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G
8、在线段BD的中点时x的值;(3)当2x6时,求EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值24(10分)先化简,再求值:,其中x满足x22x2=0.25(10分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市
9、场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本26(12分)某校有3000名学生为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDEF上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下
10、列问题:参与本次问卷调查的学生共有_人,其中选择B类的人数有_人在扇形统计图中,求E类对应的扇形圆心角的度数,并补全条形统计图若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数27(12分)观察下列等式:第1个等式:a1=-1,第2个等式:a2=,第3个等式:a3=2-,第4个等式:a4=-2,按上述规律,回答以下问题:请写出第n个等式:an=_.a1+a2+a3+an=_.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据菱形的四边相等,可得周长【详解】菱形的四边相等菱形的周长
11、=48=32故选B【点睛】本题考查了菱形的性质,并灵活掌握及运用菱形的性质2、B【解析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数故选B【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键3、D【解析】先估算出的大致范围,然后再计算出2的大小,从而得到问题的答案【详解】253231,51原式=22=2,322故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是
12、解题的关键4、A【解析】解:四边形ABCO是平行四边形,且OA=OC,四边形ABCO是菱形,AB=OA=OB,OAB是等边三角形,AOB=60,BD是O的直径,点B、D、O在同一直线上,ADB=AOB=30故选A5、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形6、A【解析】解:连接OA,OC,过点O作ODAC于点D,AOC=2B,且AOD=COD=AOC,COD=B=60;在RtCOD中
13、,OC=4,COD=60,CD=OC=2,AC=2CD=4故选A【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理7、D【解析】试题解析:由题意可知:x-10,x1故选D.8、C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,A=GFD=90,于是根据“HL”判定ADGFDG,再由GF+GB=GA+GB=12,EB=EF,BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得GDE=45,再抓住BEF是等腰三角形,而GED显然不是等腰三角形,判断是错误的【详解】由折叠可知,DF=DC=DA,DFE=C=90,DFG=A=90,ADGFD
14、G,正确;正方形边长是12,BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12x)2,解得:x=4AG=GF=4,BG=8,BG=2AG,正确;ADGFDG,DCEDFE,ADG=FDG,FDE=CDEGDE=45.正确; BE=EF=6,BEF是等腰三角形,易知GED不是等腰三角形,错误;正确说法是故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度9、D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐故选D.10、A【解析
15、】设身高GE=h,CF=l,AF=a,当xa时,在OEG和OFC中,GOE=COF(公共角),AEG=AFC=90,OEGOFC,a、h、l都是固定的常数,自变量x的系数是固定值,这个函数图象肯定是一次函数图象,即是直线;影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大故选A11、C【解析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数【详解】由题意,得cosA=,tanB=1,A=60,B=45,C=180-A-B=180-60-45=75故选C12、C【解析】试题解析:关于的一元二
16、次方程没有实数根,解得:故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、k-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式=b2-4ac=4+4k0,两者结合得出答案即可【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程, 解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.14、a3【解析】试题解析:x5x2=x3.考点:同底数幂的除法.15、10【解析】过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的
17、垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案【详解】如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,则点Pn+1的坐标为(2n+2,),则OB=,点P1的横坐标为2,点P1的纵坐标为5,AB=5,S1+S2+S3+Sn=S矩形AP1DB=2(5)=10,故答案为10【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.16、y【解析】根据幂的乘
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 浙江省 金华市 教学 集团 中考 数学 最后 试卷 解析
限制150内