2022-2023学年贵州省黔南州重点达标名校中考数学四模试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年贵州省黔南州重点达标名校中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年贵州省黔南州重点达标名校中考数学四模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1计算6m3(3m2)的结果是()A3mB2mC2mD3m2已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A8或10B8C10D6或123如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是
2、( )A30,28 B26,26 C31,30 D26,224下列计算正确的是()A2m+3n=5mn Bm2m3=m6 Cm8m6=m2 D(m)3=m35-5的相反数是( )A5BCD6已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da307在实数,中,其中最小的实数是()ABCD8如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当
3、0t10时,D当t=12s时,PBQ是等腰三角形9如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )ABCD10计算(2)23的值是( )A、1 B、2 C、1 D、2二、填空题(本大题共6个小题,每小题3分,共18分)11M的圆心在一次函数y=x+2图象上,半径为1当M与y轴相切时,点M的坐标为_12如图,ABC中,AB5,AC6,将ABC翻折,使得点A落到边BC上的点A处,折痕分别交边AB、AC于点E,点F,如果AFAB,那么BE_13分解因式:x2y6xy+9y=_14如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全
4、一致,那么它最终停留在黑色区域的概率是_15如图,矩形ABCD中,AD=5,CAB=30,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_16如图,在O中,点B为半径OA上一点,且OA13,AB1,若CD是一条过点B的动弦,则弦CD的最小值为_三、解答题(共8题,共72分)17(8分)如图,已知点C是AOB的边OB上的一点,求作P,使它经过O、C两点,且圆心在AOB的平分线上18(8分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香2.43玫瑰22.5(1)设种植郁金香 x 亩,两种花卉总收益为 y
5、万元,求 y 关于 x 的函数关系式(收益=销售额成本)(2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?19(8分)如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,4)请在图中,画出ABC向左平移6个单位长度后得到的A1B1C1; 以点O为位似中心,将ABC缩小为原来的,得到A2B2C2,请在图中y轴右侧,画出A2B2C2,并求出A2C2B2的正弦值20(8分)已知抛物线y=a(x+3)(x1)(a0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=x+b与抛物线的另一个
6、交点为D(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?21(8分)如图,在中,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径求证:与相切;当时,求的半径22(10分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,
7、连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC(1)设ONP,求AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明23(12分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项)为了解学生喜爱哪种社团活动,学校做了一次抽样调查根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生
8、有多少人?24已知AB是O的直径,弦CD与AB相交,BAC40(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若DPAC,求OCD的度数参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可【详解】6m3(3m2)=6(3)(m3m2)=2m故选B.2、C【解析】试题分析:4是腰长时,三角形的三边分别为4、4、4,4+4=4,不能组成三角形,4是底边时,三角形的三边分别为4、4、4,
9、能组成三角形,周长=4+4+4=4,综上所述,它的周长是4故选C考点:4等腰三角形的性质;4三角形三边关系;4分类讨论3、B【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1平均数是(222+23+1+28+30+31)7=1,所以平均数是1故选B考点:中位数;加权平均数4、C【解析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解【详解】解:A、2m与3n不是同类项,不能合并,故错误;B
10、、m2m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.5、A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.6、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件,故C错误;D、a30是随机事件,故D错误;故选B点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事
11、件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小8、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=
12、1(3)结论C正确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D9、A【解析】先利用勾股定理计算出AB,再在RtBDE中,求出BD即可;【详解】解:C=90,AC=4,BC=3,AB=5,ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=AC=4,DE=BC=3,BE=AB-AE=5-4=1,在RtDBE中,BD=,故选A.【点睛
13、】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等10、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。二、填空题(本大题共6个小题,每小题3分,共18分)11、(1,)或(1,)【解析】设当M与y轴相切时圆心M的坐标为(x,x+2),再根据M的半径为1即可得出y的值【详解】解:M的圆心在一次函数y=x+2的图象上运动,设当M与y轴相切时圆心M的坐标为(x, x+2),M的半径为1,x=1或x=1,当x=1时,y=,当x=1时,y=.P点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 贵州省 黔南 重点 达标 名校 中考 数学四 试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内