2021八年级数学复习教案.pdf
《2021八年级数学复习教案.pdf》由会员分享,可在线阅读,更多相关《2021八年级数学复习教案.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20212021 八年级数学复习教案八年级数学复习教案课堂教学是一个不断运动变化的过程,我们在撰写教学设计时并不可能把实际教学过程中可能会遇到的各种情况都考虑得那么精准,课堂上总会或多或少地出现这样或那样的突发性问题。今天在这里整理了一些 2021 最新八年级数学复习教案,我们一起来看看吧!2021 最新八年级数学复习教案 1一、指导思想通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
2、八(1)班、(3)班,两班比较,一班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。三班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。三、教材分析第十一章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境建立数学模型概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探
3、索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳1入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。第十二章数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图
4、表的选择等内容。第十三章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。第十四章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。第十五章整式在形式上力求突出:整式及整式运算产生的实际背景使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索
5、过程为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。四、教学措施1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中2的障碍点。2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。4、不断改进教学方法,提高自身业务素养。5、教学中注重自主学习、合作学习、探究学习。2021 最新八年级数学复习教案 2教学目的1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。2.熟识等边三角形的性质及判定.2.通过例题教学,帮助学生总结代数法求几何角
6、度,线段长度的方法。教学重点:等腰三角形的性质及其应用。教学难点:简洁的逻辑推理。教学过程一、复习巩固1.叙述等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即 AB 与 AC 重合,点 B 与点C 重合,线段 BD 与 CD 也重合,所以B=C。等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于 AD 为等腰三角形的对称轴,所以 BD=CD,AD 为底边上的中线;BAD=CAD,AD 为顶角平分线,3ADB=ADC=90,AD 又为底边上的高,因此“三线合一”。2.若等腰三角形的两
7、边长为 3 和 4,则其周长为多少?二、新课在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。2.你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到A=B=C,又由A+B+C=180,从而推出A=B=C=60。3.上面的条件和结论如何叙述?等边三角形的各角都相等,并且每一个角都等于60。等边三角形是轴对称图形吗?如果是,有几条对称轴?等边三角形也称为正三角形。例 1.在A
8、BC 中,AB=AC,D 是 BC 边上的中点,B=30,求1 和ADC 的度数。分析:由 AB=AC,D 为 BC 的中点,可知 AB 为BC 底边上的中线,由“三线合一”可知AD 是ABC 的顶角平分线,底边上的高,从而ADC=90,l=BAC,由于C=B=30,BAC 可求,所以1 可求。问题 1:本题若将 D 是 BC 边上的中点这一条件改为 AD 为等腰三角形顶角平分线或底边 BC 上的高线,其它条件不变,计算的结果是否一样?4问题 2:求1 是否还有其它方法?三、练习巩固1.判断下列命题,对的打“”,错的打“”。a.等腰三角形的角平分线,中线和高互相重合()b.有一个角是 60的等
9、腰三角形,其它两个内角也为 60()2.如图(2),在ABC 中,已知AB=AC,AD 为BAC 的平分线,且2=25,求ADB 和B 的度数。3.P54 练习 1、2。四、小结由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。五、作业:1.课本 P57 第 7,9 题。2、补充:如图(3),ABC 是等边三角形,BD、CE 是中线,求CBD,BOE,BOC,EOD 的度数。2021 最新八年级数学复习教案 3教学目标1.掌握等边三角形的性质和判定方法.2.培养分析问题
10、、解决问题的能力.教学重点:等边三角形的性质和判定方法.教学难点:等边三角形性质的应用教学过程I 创设情境,提出问题回顾上节课讲过的等边三角形的有关知识1.等边三角形是轴对称图形,它有三条对称轴.52.等边三角形每一个角相等,都等于 603.三个角都相等的三角形是等边三角形.4.有一个角是 60的等腰三角形是等边三角形.其中 1、2 是等边三角形的性质;3、4 的等边三角形的判断方法.II 例题与练习1.ABC 是等边三角形,以下三种方法分别得到的ADE 都是等边三角形吗,为什么?在边 AB、AC 上分别截取 AD=AE.作ADE=60,D、E 分别在边 AB、AC 上.过边 AB 上 D 点
11、作 DEBC,交边 AC 于 E 点.2.已知:如右图,P、Q 是ABC 的边 BC 上的两点,并且PB=PQ=QC=AP=AQ.求BAC 的大小.分析:由已知显然可知三角形 APQ 是等边三角形,每个角都是60.又知APB 与AQC 都是等腰三角形,两底角相等,由三角形外角性质即可推得PAB=30.3.P56 页练习 1、2III 课堂小结:1.等腰三角形和性质;等腰三角形的条件V 布置作业:1.P58 页习题 12.3 第 ll 题.2.已知等边ABC,求平面内一点P,满足A,B,C,P 四点中的任意三点连线都构成等腰三角形.这样的点有多少个?2021 最新八年级数学复习教案 4教学目标1
12、.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应6用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称
13、图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形等腰三角形.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线 L,在 L 上取点 A,在 L 外取点 B,作出点 B 关于直线 L 的对称点 C,连结 AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 八年 级数 复习 教案
限制150内