云南省玉溪市民族中学2023届高三第三次测评数学试卷含解析.doc
《云南省玉溪市民族中学2023届高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省玉溪市民族中学2023届高三第三次测评数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为( )ABC1D22对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,.下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )发芽所需天数1234567种子数43352210A2B3C3.5D43在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD4已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为( )ABCD5已知集合,则集合( )ABCD6已知命题:,则为( )A,B,C,D,7已知中,角、所
3、对的边分别是,则“”是“”的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充分必要条件8已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD9已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )A2或B3或C4或D5或10在平行六面体中,M为与的交点,若,,则与相等的向量是( )ABCD11已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D512已知某几何体的三视图如右图所示,则该几何体的体积为( )A3BCD二、填空题:本题共4小题,每小题5分,共20分。13已知复
4、数(为虚数单位),则的共轭复数是_,_14已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为_.15设为偶函数,且当时,;当时,关于函数的零点,有下列三个命题:当时,存在实数m,使函数恰有5个不同的零点;若,函数的零点不超过4个,则;对,函数恰有4个不同的零点,且这4个零点可以组成等差数列其中,正确命题的序号是_16已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,且满足,证明:.18(12分)的内角,的对边分别为,其面积记为,满足.(1)求;(2)若,
5、求的值.19(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.20(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人
6、数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.21(12分)为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.()由以上数据绘制成22联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?男女总计合格不合格总计()从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.附:0.1000.0500.0100.0012.7063.8
7、416.63510.828 22(10分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】每一次成功的概率为,服从二项分布,计算得到答案.【详解】每一次成功的概率为,服从二项分布,故.故选:.【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.2、C【解析】根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.【点睛】本题考查中位数的计算,属基础题.3、D【解析】试题分析:由已知可得有两个不等
8、实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.4、A【解析】根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.5、D【解析】根据集合的混合运算,即可容易求得结
9、果.【详解】,故可得.故选:D.【点睛】本题考查集合的混合运算,属基础题.6、C【解析】根据全称量词命题的否定是存在量词命题,即得答案.【详解】全称量词命题的否定是存在量词命题,且命题:,.故选:.【点睛】本题考查含有一个量词的命题的否定,属于基础题.7、D【解析】由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“” 是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题8、D【解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 玉溪市 民族 中学 2023 届高三 第三次 测评 数学试卷 解析
限制150内