上海市晋元高级中学2023年高三第三次测评数学试卷含解析.doc





《上海市晋元高级中学2023年高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市晋元高级中学2023年高三第三次测评数学试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )ABC16D322已知定义在R上的偶函数满足,当时,函数(),则函数与函数的图象的所有交点的横坐标
2、之和为( )A2B4C5D63已知等差数列满足,公差,且成等比数列,则A1B2C3D44已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,则,的大小关系(用不等号连接)为( )ABCD5 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件6已知集合,则( )ABCD7已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( )ABCD8双曲线的渐近线方程为( )ABCD9若满足,且目标函数的最大值为2,则的最小值为( )A8B4CD610设函数是奇函数的导函数,当时,则使得成立的的取值范围是( )ABCD11函数与在上最多有n个交点,交
3、点分别为(,n),则( )A7B8C9D1012中,角的对边分别为,若,则的面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且,则实数m的值是_14已知全集,则_.15已知,则_。16已知向量满足,且,则 _三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图所示,已知平面,为等边三角形,为边上的中点,且.()求证:面;()求证:平面平面;()求该几何体的体积18(12分)已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长19(12分)已知是等差数列,满足,数列满足,且是
4、等比数列.(1)求数列和的通项公式;(2)求数列的前项和.20(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.21(12分)如图,在直三棱柱中,D,E分别为AB,BC的中点.(1)证明:平面平面;(2)求点到平面的距离.22(10分)如图,在四棱锥中,底面是直角梯形且,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直
5、角边长为4,所以体积是,选A.2、B【解析】由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.3、D【解析】先用公差表示出,结合等比数列求出.【详解】,因为成等
6、比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.4、A【解析】因为,所以,即周期为,因为为奇函数,所以可作一个周期-2e,2e示意图,如图在(,)单调递增,因为,因此,选点睛:函数对称性代数表示(1)函数为奇函数 ,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则5、B【解析】先求出满足的值,然后根据充分必要条件的定义判断【详解】由得,即, ,因此“”是“,”的必要不充分条件故选:B【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取值范围进
7、行判断6、B【解析】计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.7、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案考点:异面直线所成的角8、A【解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.9、A【解析】作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 高级中学 2023 年高 第三次 测评 数学试卷 解析

限制150内