上海市静安区、青浦区2022-2023学年高三冲刺模拟数学试卷含解析.doc
《上海市静安区、青浦区2022-2023学年高三冲刺模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市静安区、青浦区2022-2023学年高三冲刺模拟数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数满足为虚数单位),则的虚部为( )ABCD2函数的图象大致是( )ABCD3已知为虚数单位,若复数
2、,则ABCD4设函数恰有两个极值点,则实数的取值范围是( )ABCD5已知.给出下列判断:若,且,则;存在使得的图象向右平移个单位长度后得到的图象关于轴对称;若在上恰有7个零点,则的取值范围为;若在上单调递增,则的取值范围为.其中,判断正确的个数为( )A1B2C3D46对于函数,若满足,则称为函数的一对“线性对称点”若实数与和与为函数的两对“线性对称点”,则的最大值为( )ABCD7如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,为茎叶图中的学生成绩,则输出的,分别是() A,B,C,D,8秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多
3、项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为( ) ABCD9设等差数列的前n项和为,且,则( )A9B12CD10要得到函数的图象,只需将函数的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位11已知正项等比数列的前项和为,且,则公比的值为()AB或CD12已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( )与点距离为的点形成一条曲线,则该曲线的长度是;若面,则与面所成角的正切值取值范围是;若,则在该四棱柱六个面上的正
4、投影长度之和的最大值为.ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则下列结论中正确的是_.是周期函数;的对称轴方程为,;在区间上为增函数;方程在区间有6个根.14已知(且)有最小值,且最小值不小于1,则的取值范围为_.15已知正实数满足,则的最小值为 16已知向量,满足,且已知向量,的夹角为,则的最小值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.18(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.()求的方程;()在以为极点,轴
5、的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.19(12分)已知等差数列的前n项和为,公差,、成等比数列,数列满足.(1)求数列,的通项公式;(2)已知,求数列的前n项和.20(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系
6、统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.21(12分) 选修4 - 5:不等式选讲 已知都是正实数,且,求证: 22(10分)已知椭圆 的左焦点为F,上顶点为A,直线AF与直线 垂直,垂足
7、为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线 交于点Q,且,求点P的坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】,分子分母同乘以分母的共轭复数即可.【详解】由已知,故的虚部为.故选:C.【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.2、A【解析】根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减
8、,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.3、B【解析】由可得,所以,故选B4、C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值
9、点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.5、B【解析】对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【详解】因为,所以周期.对于,因为,所以,即,故错误;对于,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,所以错误;对于,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故正确;对于,因为,且,所以,解得,又,所以,故正确.故选:B.【点睛】本题考查三角函数的恒等变换,考查
10、三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.6、D【解析】根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.7、B【解析】试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 静安区 青浦区 2022 2023 学年 冲刺 模拟 数学试卷 解析
限制150内