上海市虹口高级中学2023年高三二诊模拟考试数学试卷含解析.doc
《上海市虹口高级中学2023年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市虹口高级中学2023年高三二诊模拟考试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知椭圆:的左、右焦点分别为,点,在椭圆上,其中,若,则椭圆的离心率的取值范围为( )ABCD2若,则下列不等式不能成立的是( )ABCD3已知函数满足=1,则等于( )A-BC-D4已知甲
2、、乙两人独立出行,各租用共享单车一次(假定费用只可能为、元)甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )ABCD5设a,b都是不等于1的正数,则“”是“”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件6已知随机变量服从正态分布,且,则( )ABCD7若复数在复平面内对应的点在第二象限,则实数的取值范围是( )ABCD8设集合,则( )ABCD9已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是( )ABCD10函数的值域为( )ABCD11函数,则“的图象关于轴对称
3、”是“是奇函数”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知等差数列的前n项和为Sn,若,则_.14 “今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺”则每天增加的数量为_尺,设该女子一个月中第n天所织布的尺数为,则_15在中,角,的对边分别为,.若;且,则周长的范围为_.16双曲线的左右顶点为,
4、以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线:(为参数),曲线(为参数)(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值18(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.(1)求椭圆的方程;(2)延长分别交椭圆于点(不重合).设,求的最小值.19(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;
5、(2)若点在圆上,点为坐标原点,求的取值范围.20(12分)如图,在直三棱柱中,D,E分别为AB,BC的中点.(1)证明:平面平面;(2)求点到平面的距离.21(12分)已知三点在抛物线上.()当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;()当,且时,求面积的最小值.22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点AB,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分
6、,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据可得四边形为矩形, 设,根据椭圆的定义以及勾股定理可得,再分析的取值范围,进而求得再求离心率的范围即可.【详解】设,由,知,因为,在椭圆上,所以四边形为矩形,;由,可得,由椭圆的定义可得,平方相减可得,由得;令,令,所以,即,所以,所以,所以,解得.故选:C【点睛】本题主要考查了椭圆的定义运用以及构造齐次式求椭圆的离心率的问题,属于中档题.2、B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;
7、选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.3、C【解析】设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.【详解】解:设的最小正周期为,因为,所以,所以,所以,又,所以当时,因为,整理得,因为,则所以.故选:C.【点睛】本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.4、B【解析】甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得【详解】由题意甲、乙租车费用为3元的概率分别是,甲、乙两人所扣租车费用相同的概率为故选:B【点睛】本题考查独立性事件的概率
8、掌握独立事件的概率乘法公式是解题基础5、C【解析】根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可【详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题6、C【解析】根据在关于对称的区间上概率相等的性质求解【详解】,故选:C【点睛】本题考查正态分布的应用掌握正态曲线的性质是解题基础随机变量服从正态分布,则7、B【解析】复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选
9、:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题8、D【解析】利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.9、A【解析】先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 虹口 高级中学 2023 年高 三二诊 模拟考试 数学试卷 解析
限制150内