云南省丽江市2023届高三下学期第六次检测数学试卷含解析.doc
《云南省丽江市2023届高三下学期第六次检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省丽江市2023届高三下学期第六次检测数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设正项等比数列的前n项和为,若,则公比( )AB4CD22已知函数,且在上是单调函数,则下列说法正确的是( )ABC函数在上单调递减D函数的图像关于点对称3定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是(
2、 )ABCD以上情况均有可能4已知函数是定义域为的偶函数,且满足,当时,则函数在区间上零点的个数为( )A9B10C18D205有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装( )(附:)A个B个C个D个6设集合则( )ABCD7若圆锥轴截面面积为,母线与底面所成角为60,则体积为( )ABCD8已知,且,则的值为( )ABCD9已知的值域为,当正数a,b满足时,则的最小值为( )AB5CD910已知函数(),若函数有三个零点,则的取值范围是( )ABCD11已知集合,则( )ABCD12已知函数在上都存在导函数,
3、对于任意的实数都有,当时,若,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为_.14已知矩形 AB
4、CD,AB= 4 ,BC =3,以 A, B 为焦点,且 过 C, D 两点的双曲线的离心率为_.15过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是_16有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有_种; _;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,求的面积最小值.18(12分)已知函数.(1)若,且,求证:
5、;(2)若时,恒有,求的最大值.19(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)20(12分)已知等比数列是递增数列,且(1)求数列的通项公式;(2)若,求数列的前项和21(12分)如图,在四棱锥中,平面平面,.()求证:平面;()若锐二面角的余弦值为,求直线与
6、平面所成的角.22(10分)如图,在直三棱柱中,D,E分别为AB,BC的中点.(1)证明:平面平面;(2)求点到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由得,又,两式相除即可解出【详解】解:由得,又,或,又正项等比数列得,故选:D【点睛】本题主要考查等比数列的性质的应用,属于基础题2、B【解析】根据函数,在上是单调函数,确定 ,然后一一验证,A.若,则,由,得,但.B.由,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以 ,即,所以
7、,若,则,又因为,即,解得, 而,故A错误.由,不妨令 ,得由,得 或当时,不合题意.当时,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.3、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解
8、决本题的关键4、B【解析】由已知可得函数f(x)的周期与对称轴,函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,作出函数f(x)与g(x)的图象如图,数形结合即可得到答案.【详解】函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,由f(x)f (2x),得函数f(x)图象关于x1对称,f(x)为偶函数,取xx+2,可得f(x+2)f(x)f(x),得函数周期为2.又当x0,1时,f(x)x,且f(x)为偶函数,当x1,0时,f(x)x,g(x),作出函数f(x)与g(x)的图象如图:由图可知,两函数图象共10个交点,即函
9、数F(x)f(x)在区间上零点的个数为10.故选:B.【点睛】本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.5、C【解析】计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球故选:【点睛
10、】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.6、C【解析】直接求交集得到答案.【详解】集合,则.故选:.【点睛】本题考查了交集运算,属于简单题.7、D【解析】设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.8、A【解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,所以.故选:A.【点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 丽江市 2023 届高三 下学 第六 检测 数学试卷 解析
限制150内