云南省昆明市官渡区2022-2023学年高三考前热身数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《云南省昆明市官渡区2022-2023学年高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省昆明市官渡区2022-2023学年高三考前热身数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,集合,则()ABCD2若函数的图象过点,则它的一条对称轴方程可能是( )ABCD3函数的一个零点在区间内,则实数a的取值范围是( )ABCD4在三棱锥中,则三棱锥外接球的表面积是(
2、 )ABCD5若的展开式中含有常数项,且的最小值为,则( )ABCD6在平行六面体中,M为与的交点,若,,则与相等的向量是( )ABCD7已知函数,集合,则( )ABCD8已知是第二象限的角,则( )ABCD9已知角的终边与单位圆交于点,则等于( )ABCD10计算等于( )ABCD11已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为()ABC4D212已知,若,则等于( )A3B4C5D6二、填空题:本题共4小题,每小题5分,共20分。13请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:_14在的展开式中,常数项为_.(用数字作
3、答)15某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为_.时,可使得所用材料最省.16已知,的夹角为30,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,注:年返修率=(1)从该公司年的相关数据中任意
4、选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中, ,.18(12分)在中,为边上一点,.(1)求;(2)若,求.19(12分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人
5、群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)20(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.21(12分)的内角,的对边分别为,已知的面积为.(1)求;(2)若,求的周长.22(10分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】可求出集合,然后进行并集的运
6、算即可【详解】解:,;故选【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算2、B【解析】把已知点坐标代入求出,然后验证各选项【详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键3、C【解析】显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.4、B【解析】取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,
7、平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.5、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出
8、第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.6、D【解析】根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.7、C【解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,故选C【点睛】本题主要考查了集合的基本运算,难度容易.8、D【解析】利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,即,因为,所以,
9、由二倍角的正弦公式可得,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.9、B【解析】先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.10、A【解析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.11、D【解析】设,根据可得,再根据又,由可得,化简可得,即可求出离心率【详解】解:设,即,又,由可得,即,故选:D【点睛】本题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 昆明市 官渡区 2022 2023 学年 考前 热身 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内