上海理工大学附属中学2022-2023学年高考仿真卷数学试卷含解析.doc
《上海理工大学附属中学2022-2023学年高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海理工大学附属中学2022-2023学年高考仿真卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知的面积是, ,则( )A5B或1C5或1D2已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )ABCD3已知非零
2、向量,满足,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解:4函数()的图像可以是( )ABCD5函数的大致图象是ABCD6中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D2407半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面
3、积的最大值为( )ABCD8设m,n为直线,、为平面,则的一个充分条件可以是( )A,B,C,D,9已知实数,满足约束条件,则目标函数的最小值为ABCD10已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为( )AB3C2D11已知函数是偶函数,当时,函数单调递减,设,则的大小关系为()ABCD12在复平面内,复数对应的点的坐标为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数函数,则不等式的解集为_14(5分)已知,且,则的值是_15动点到直线的距离和他到点距离相等,直线过且交点
4、的轨迹于两点,则以为直径的圆必过_.16在平面直角坐标系中,已知,若圆上有且仅有四个不同的点C,使得ABC的面积为5,则实数a的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知正数x,y,z满足x+y+z=t(t为常数),且的最小值为,求实数t的值.18(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.19(12分)已知,函数.()若在区间上单调递增,求的值;()若恒成立,求的最大值.(参考数据:)20(12分)已知函数.(1)讨论的单调性;(2)函数,若对于,使得成立,求的取值范围.21(12分)在平面直角坐标系中
5、,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.22(10分)(1)求曲线和曲线围成图形的面积;(2)化简求值:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,,若为钝角,则,由余弦定理得,解得;若为锐角,则,同理得.故选B.2、A【解析】由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,所以,
6、从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,所以;当轴时,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.3、C【解析】根据向量的数量积运算,由向量的关系,可得选项.【详解】,等价于,故选:C.【点睛】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.4、B【解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义
7、域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.5、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题6、A【解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(
8、种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题7、B【解析】设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,化为,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.8、B【解析】根据线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 理工大学 附属中学 2022 2023 学年 高考 仿真 数学试卷 解析
限制150内