乐都县第一中学2023年高考数学二模试卷含解析.doc
《乐都县第一中学2023年高考数学二模试卷含解析.doc》由会员分享,可在线阅读,更多相关《乐都县第一中学2023年高考数学二模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1等差数列的前项和为,若,则数列的公差为( )A-2B2C4D72设实数满足条件则的最大值为( )A1B2C3D43已知集合,则( )ABCD4设函数,若函数有三个零点,则()A12
2、B11C6D35二项式的展开式中,常数项为( )AB80CD1606在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( )ABCD7三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,若点在线段上,且,则过点的平面截球所得截面的最小面积为( )ABCD8已知函数,的零点分别为,则( )ABCD9阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )AB6CD10一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )ABCD11已知是过抛物线焦点的弦,是原点,则( )A2B4C3D312普通高中数学课程标准(2017版)提出了数学学科的六大核心素养
3、.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是( )A甲的数据分析素养高于乙B甲的数学建模素养优于数学抽象素养C乙的六大素养中逻辑推理最差D乙的六大素养整体平均水平优于甲二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_14点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为_15已知平面向量、的夹角为,且,则的最大
4、值是_16设为锐角,若,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”. (1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯
5、服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附: 0.0500.0100.001 3.8416.63510.82818(12分)如图,在四棱锥中,底面是边长为2的菱形,.(1)证明:平面平面ABCD;(2)设H在AC
6、上,若,求PH与平面PBC所成角的正弦值.19(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.20(12分)已知,.(1)解;(2)若,证明:.21(12分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.22(10分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前
7、项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.2、C【解析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.3、A【解析】求得集合中函数的值域,由此求得,进而求得.【详解】由,得,所以,所以.故选:A【点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.4、B【解析】画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果【详解】作出函数的
8、图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.5、A【解析】求出二项式的展开式的通式,再令的次数为零,可得结果.【详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.6、A【解析】由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故
9、选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.7、A【解析】由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.【详解】如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=取SA中点E,由SA=4,AD=3SD,得DE=1,所以OD=.则过点D的平面截球O所得截面圆的最小半径为所以过点D的平面截球O所得截面的最小面积为故选:A【点睛】本题考查三棱锥的外接球问题,还考查了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 乐都县 第一 中学 2023 年高 数学 试卷 解析
限制150内