上海市长征中学2023届高三第一次调研测试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《上海市长征中学2023届高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市长征中学2023届高三第一次调研测试数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数是奇函数,且,若对,恒成立,则的取值范围是( )ABCD2已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD4已知函数的图像的一条对称轴为直线,且,则的最小值为( )AB0CD5已知复数满足(其中为的共轭复数),则的值为( )A1B2CD6若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( )ABC2或D2或7设是两条不同的直线,是两个不同的平面,下列命
3、题中正确的是()A若,则B若,,则C若,则D若,则8观察下列各式:,根据以上规律,则( )ABCD9设正项等比数列的前n项和为,若,则公比( )AB4CD210已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为( )AB40C16D11已知函数()的最小值为0,则( )ABCD12已知函数,则函数的零点所在区间为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设f(x)etx(t0),过点P(t,0)且平行于y轴的直线与曲线C:yf(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1),则PRS的面积的最小值是_14已知函数,则的值为 _1
4、5已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_.16若函数,则_;_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知,()求的大小;()若,求面积的最大值18(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.()若,求曲线的方程;()如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;()对于()中的曲线,若直线过点交曲线于点,求面积的最大值.19(12分)如图,在四棱锥中,底面是矩形,是的
5、中点,平面,且,()求与平面所成角的正弦()求二面角的余弦值20(12分)已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.21(12分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,求证:当时,22(10分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A (k0)的一个特征向量为,A的逆矩阵A1对应的变换将点(3,1)变为点(1,1)求实数a,k的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先根据函数奇偶性求得,利用导数判断函数单调性
6、,利用函数单调性求解不等式即可.【详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,得,所以的取值范围是.故选:A.【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.2、B【解析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题3、D【解
7、析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.4、D【解析】运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以,当时,的最小值,故选D.【点睛】本
8、题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5、D【解析】按照复数的运算法则先求出,再写出,进而求出.【详解】,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.6、C【解析】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要
9、考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.7、C【解析】在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,则与相交或平行,故A错误;在B中,若,则或,故B错误;在C中,若,则由线面垂直的判定定理得,故C正确;在D中,若,则与平行或,故D错误故选C【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题8、B【解析】每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算【详解】以及数列的应用根据题设条件,设数字,构成一个数列,可得数列满足
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 长征 中学 2023 届高三 第一次 调研 测试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内